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Abstract 

 

Information superiority, along with air superiority, must be achieved and 

maintained in a theatre of battle in order to increase efficacy and provide protection to 

our forces, both on the ground and in the air.  Information, for the most part, utilizes an 

underlying network that is identified, and is of vital interest to a commander in a wartime 

or peacetime scenario.  This underlying network must be modeled and analyzed in order 

to develop target prioritization and to analyze effects of target prioritization 

implementation.   

In this work goal programming is used to solve a minimum cost multicommodity 

network flow problem with multiple objectives.  The networks to be analyzed are 

telecommunication networks, specifically, a single telecommunication network with 

multiple commodities (e.g., voice, video, data, etc.) flowing over it.  This network 

consists of: linear objective function, linear cost arcs, fixed capacities, specific origin-

destination pairs for each commodity.  A minimum cost multicommodity network flow 

problem with multiple objectives can be successfully modeled using linear goal 

programming techniques.  When properly modeled, network flow techniques may still be 

employed to exploit the pure network structure of a minimum cost multicommodity 

network flow problem with multiple objectives.  There exist techniques that take 

advantage of these underlying network properties in a goal programming format; 

Lagrangian relaxation and Dantzig-Wolfe decomposition.  Lagrangian relaxation 
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captures the essence of the pure network flow problem as a master problem and sub-

problems (McGinnis and Rao, 1977).  A subgradient algorithm may optimize the 

Lagrangian function, or the Lagrangian relaxation could be decomposed into 

subproblems per commodity; each subproblem is a minimum cost single commodity 

network flow problem.  Parallel to the decomposition of the Lagrangian relaxation, 

Dantzig-Wolfe decomposition may be implemented to the linear program. 

All three modeling techniques provide a solution method to effectively analyze 

the multicommodity network flow problem at hand.  Post-optimality analyses provide a 

variety of options to analyze the robustness of the optimal solution.  The options of post-

optimality analysis consist of sensitivity analysis and parametric analysis.  This mix of 

modeling options and analyses provide a powerful method to produce insight into the 

modeling of a multicommodity network flow problem with multiple objectives. 
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MODELING AND ANALYSIS OF  

 MULTICOMMODITY NETWORK FLOWS  

VIA GOAL PROGRAMMING 
 
 
 

I.  Introduction 

Background 

During periods of conflict, Information Warfare is the altering, by any means, of 

the enemy’s information and its function, while protecting the United States from 

information alteration infliction (Defense, 1998:GL-11).  Information, according to Air 

Force Doctrine, encompasses  “facts, data, or instructions in any medium or form” 

(AFDD 2-5, 1998:135).  During conflict, information operations are “actions taken to 

gain, exploit, defend or attack information (IIW) and information warfare (IW)” (AFDD 

2-5, 1998:135).  Information or knowledge enables a competitive advantage over the 

enemy. 

Information in the battlefield is often encapsulated within networks.  According to 

Joint Pub 6-0, within the past six years there has been an explosion in the number of 

communication networks within the world (Joint Pub 6-0, 1995:VI-1).  Modeling and 

analysis of communication networks, therefore, would be beneficial to the United States 

Air Force. 
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Statement of the Problem 

Inherent to the transfer and support of information, networks are formed to send 

information from point A to point B.  Networks can describe aspects of a country’s 

infrastructure.   For instance, networks are embedded in electrical power grids, radio 

relay facilities, SATCOM links, computer and data processing centers, national C3I 

centers, telephone exchanges, and logistical mobilization (AFPHM 14-210, 1998:87).  A 

country’s infrastructures are often its most vital assets.  Specifically, telecommunication 

networks can be targeted or exploited at the commander’s discretion. 

Quantitative models are often used to represent networks.  A variety of efficient 

algorithms have been developed for pure network flow problems, such as linear 

minimum cost single commodity flow problems.  Minimum cost multicommodity 

network flow problems with side constraints are more complex than traditional pure 

network flow problems, but algorithms also exist for these models. 

Telecommunication networks may be modeled as multicommodity network flow 

problems.  Realistically, when dealing with telecommunication networks, there may be 

multiple, often conflicting, objectives.  The analyst of a telecommunication network may 

want to both minimize the cost of the flow of the commodities on the network, while 

maximizing the utilization of the network arcs.  These conflicting objectives may be 

formulated and represented as additional side constraints to a network model. 

Telecommunication networks are typically vast in size, which causes an increase 

in modeling complexity and analysis times.  The exploitation of the underlying pure 

network structure of a multicommodity network flow problem with multiple objectives 

would reduce the computationa l time.  A variety of modeling techniques to exploit the 



3 

underlying pure network structure of a multicommodity network flow problem with 

multiple objectives and post optimality analysis are required to extrapolate information of 

interest in the particular network being analyzed.   

Research Approach 

In this research, a variety of optimization and modeling techniques (graph theory, 

network flows, multiple criteria decision making (MCDM), linear goal programming 

(LGP), Lagrangian relaxation, Dantzig-Wolfe decomposition, LGP sensitivity analysis, 

and parametric analysis) concepts were implemented to model and analyze minimum cost 

multicommodity network flow problems with multiple objectives.  First, network data 

must be provided to the level of detail required to conduct the desired analysis.  Graph 

theory and network flow techniques must be employed to produce a graphical 

representation consisting of commodity, origin-destination pairs, fixed locations, 

bandwidth, preferences, and distances.  Next, MCDM is used to identify multiple 

objectives (goals) within the network.  For example, goals on flow between nodes, goals 

on flow through a given node, or goals on the cost of flow along any given set of arcs 

represent preferences that must be defined.   

Linear goal programming (LGP) techniques are next implemented to formulate a 

minimum cost multicommodity network with multiple objectives.  If the problem being 

analyzed is relatively small, with respect to computational time requirements, then the 

linear problem may be solved.  However, if a larger problem is present, then Lagrangian 

relaxation may be applied to preserve the pure network structure.  If the problem consists 

of a linear objective function, linear arc costs, and fixed capacity, Dantzig-Wolfe 
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decomposition may optionally be applied to solve the minimum cost multicommodity 

network flow problem with multiple objectives.   

Post-optimality analyses, both sensitivity analysis and parametric analysis, are 

conducted to provide additional insight about the network.  GP sensitivity analysis is used 

to aid in identifying vulnerabilities in the network.  Areas of investigation include: (1) 

changes in the weighting at a priority level; (2) changes in the weighting of deviation 

variables within a priority level; (3) changes in right-hand-side values; (4) reordering of 

preemptive priorities.  Parametric analysis of the nodes and/or arcs identifies commodity 

tradeoffs at the source nodes.  This provides insight into alternate routes within the 

network, or cause and effect of reductions in capacity at nodes or arcs of interest.   

Scope and Limitations 

This effort focuses on modeling and analysis of minimum cost multicommodity 

network flow problems with multiple objectives.  The pedagogical network tested in this 

thesis is a telecommunications network with commodities voice, video, and data.  

Additional commodities could be added or replaced to model other multicommodity 

network flow problems. 

Summary 

This introduction outlines the foundation of the impetus behind this study’s 

methodology and research approach.  Chapter 2 reviews the fundamental elements of the 

concepts and techniques relevant to this methodology such as graph theory, network 

flows, multiple criteria decision making, linear goal programming, Lagrangian relaxation, 

Dantzig-Wolfe decomposition, LGP sensitivity analysis, and parametric analysis.  
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Chapter 3 describes in detail the methodology employed by this study to obtain and 

quantify the network problem’s multiple objectives, the flow of the commodities, and the 

utilization of the underlying pure network structure of a minimum cost multicommodity 

network flow problem with multiple objectives.  Chapter 4 presents the implementation 

and results of the methodology to a notional telecommunications network scenario.  

Chapter 5 summarizes observations, conclusions of this research, and provides suggested 

areas for future research. 



6 

 

II.  Literature Review 

General Network Flows 

The field of network flows encompasses “a problem domain that lies at the cusp 

between several fields of inquiry, including applied mathematics, computer science, 

engineering, management, and operations research” (Ahuja, Magnanti and Orlin, 1993:1).  

These network flows exist in everyday activities in modern civilization.  All of these 

underlying networks can be decomposed into an entity (electricity, a consumer product, a 

person or vehicle, a message, and so forth), which traverses one point to another as 

efficiently as possible (Jewell, 1966:7; Ahuja, et al., 1993:1).  Efficient pure network 

algorithms may be applied to these decomposed single commodity network flow 

problems.  The modeling and analysis of these underlying networks are categorized 

network flow problems.  Network optimization is a link between linear programming and 

combinatorial optimization; the network structure ensures integer solutions at the extreme 

points of the feasible polyhedral region (Bertsekas, 1998:ix).  

Network Flow and Graph Theory 

The field of Graph Theory maps ways to understand, classify, and analyze graphs.  

Graph is a theoretical term for a network that includes various nodes connected by links 

(Pooch, Machuel and McCahn, 1991:204).   Network topology refers to the connection of 

links and nodes within a network (Pooch, et al., 1991:204).  Formally, Wilson describes a 

graph to be a collection of points (vertices), joined together by lines (edges); where each 

edge links exactly two vertices (Wilson and Watkins, 1990:8).  Common terms in 
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network theory like node, link (or arc), and path are terms borrowed from graph theory 

(Pooch, et al., 1991:204). 

According to Ahuja, Magnanti, and Orlin, a weighted graph is a “graph whose 

nodes and/or arcs have associated numerical values (typically, costs, capacities, supplies 

and demands)” (Ahuja, et al., 1993:24).  This graph, or network G = (N,J), includes a  set 

of  nodes, N = {1,2,…,n} and a set of arcs, J = {(i,j), (e,f),…,(l,k)} connecting pairs of 

vertices (Ahuja, et al., 1993:24; Bazaraa, Jarvis and Sherali, 1997:421; Bertsekas, 

1998:3).  Each pair of nodes has a specific flow from node i to node j (Ahuja, et al., 

1993:24; Bazaraa, et al., 1997:421).  An undirected network is a network where there 

exists no directional orientation of flow.   

Node-Arc Incidence Matrix.   

Various storage methods can be used to capture the orientation of the network 

topology.  One such storage representation is the node-arc incidence matrix, which 

captures the network as a mn × matrix A .  This matrix contains one row for each node of 

the network and one column for each arc number, where n equals the number of nodes 

and m equals the number of arcs (Ahuja, et al., 1993:33; Bazaraa, et al., 1997:425).  This 

type of representation, shown in Figure 1, is commonly used in network formulations.   

1 2  
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6  
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1      2       3      4       5        6 
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Figure 1.  Node-Arc Incidence Matrix 
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The node-arc incidence matrix form of data representation is used in the 

formulation presented in this thesis.  Often when dealing with communication networks 

the arcs are undirected, and traditionally are transformed into two directed arcs for every 

one undirected arc, which contributes to a larger matrix.  In the formulation presented in 

this thesis, the arcs are assigned an arbitrary orientation within the node-arc incidence 

matrix. 

Network Disruption   

Network disruption is a topic of interest in the field of network flows.  Frank and 

Frisch state a network is destroyed if at least one of the following criteria exists (Frank 

and Frisch, 1971:300-301). 

1. G contains at least two components. 
 
2. There is no directed path s-t for a specified set of nodes. 
 
3. The number of vertices in the largest component of G is less than some specified 

number. 
 
4. The shortest s-t path is longer (or less reliable) than some specified value. 

 

The same criteria may apply to a disrupted network with the exception that the individual 

components need not be totally severed from one another.  Instead, there may be a result 

of a reduction in capacity or a reduction in commodities. For the purpose of this study, a 

disrupted network is explored. 

Minimum Cost Flows 

A fundamental problem in network theory is the minimum cost flow problem, 

which means the movement of a commodity from sources that reside at one or more 
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nodes in a network, to meet demands at other nodes, at a cost of shipment (Ahuja, et al., 

1993:4; Bazaraa, et al., 1997:420).  Examples of such networks include (Ahuja, et al., 

1993:4): 

 
• Distribution of a product from manufacturing plants to warehouses 

 
• Work-pieces through the machining stations in a production line 

 
• Routing of calls through a telephone system 

 
• Routing of automobiles through an urban street network 

 
 
The objective of such a formulation is a solution that provides the least cost to ship 

commodities through a network subject to supply and demand constraints.  Assume there 

exists a graph G= (N,A) and let graph G be a directed graph with a flow cost cij and 

capacity uij associated with every arc (i,j) ∈ A (Ahuja, et al., 1993:296; Bazaraa, et al., 

1997:420; Bertsekas, 1998:9).  The set of all nodes, N, each have an associated supply, 

demand, or transshipment requirement b(i), depending on whether b(i) > 0 (demand), b(i) 

< 0 (supply), or b(i) = 0 (transshipment) (Ahuja, et al., 1993:296; Bazaraa, et al., 

1997:420; Bertsekas, 1998:6).  These may be used to formulate a minimum cost network 

flow problem: 

Minimize: 

  
∑

∈Aji
ijijxc

),(  (1) 
Subject to: 

  ∑ ∑
∈ ∈

=−
}),(:{ }),(:{Ajij Aijj

ijiij rxx  i∀ N∈  (2) 

 

  ijij bx ≤≤0   ),( ji∀  A∈  (3) 
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where,  

ijc   = The unit cost 

ijx   = The units of flow from node i  to node j  

ir    = The number of units of demand, supply, or 0 

ijb   = The upper unit capacity from node i  to node j  

Unimodularity dictates that the linear pure network flow problem always has an 

integer solution (assuming that the data are integer)  (Ahuja, et al., 1993:543; Bazaraa, et 

al., 1997:429).  A unimodular matrix is a matrix that has the property whereby every 

square submatrix of the matrix has determinant +1, -1, or 0 (Bazaraa, et al., 1997:429).  

The integrality property does not extend to multicommodity network flow problems, 

however, due the addition of the mutual capacity flow constraints (Ahuja, et al., 

1993:651).   

Multicommodity Network Flow 

Multicommodity network flow problems are a generalization of pure network 

flow problems; more than one commodity, distinguished by commodity type or origin-

destination pair, share the same network.  Multicommodity network problems exist 

whenever different commodities are shipped simultaneously from their respective origins 

to their respective destinations throughout the same topological make-up.  The multiple 

commodities compete for the mutual arc capacities in the network.  Goldberg, Oldham, 

Plotkin and Stein describe the minimum cost multicommodity network flow problem as 

the simultaneous shipping of commodities through a single network, while total flow 

obeys mutual and individual arc capacities at minimum cost (Goldberg, Oldham, Plotkin 
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and Stein, 1997:1).  Figure 2 depicts a typical arc in a minimum cost multicommodity 

network flow problem (Jewell, 1966:9).   

Any arc from a minimum cost multicommodity network flow problem is defined 

by its own characteristics.  In Figure 2, bij is the mutual flow capacity shared by each 

commodity.  Network feasibility requires that the sum of flow of each commodity be  

i j 

  ;             ...            ... ...            

i,j = 1,2,...,N 
k = 1,2,...K 

 
            - non-negative flow of type k  in (i,j) 
 
            - individual flow capacity of type k  
 
            - mutual flow capacity of branch (i,j) 
 
            - per-unit cost of type k  flow 

...            

...            

...            
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ijx )( K
ijx

)( k
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Figure 2.  Representative Arc From a Minimum Cost Multicommodity 

Network Flow Problem 
 
 

less than or equal to the capacity of the arc.  The multicommodity network flow problem 

makes it “possible for the per-unit costs of the different kinds of flows to be different, 

even in a ‘shared’ branch” (Jewell, 1966:7).  Equation (6) represents the formulation of 
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the mutual capacity flow constraints in the mathematical formulation of the minimum 

cost multicommodity network flow problem. 

   
Minimize: 

  
xc k

ij
Kkl

k
ij

Aji
∑∑

≤≤∈),(  (4) 
Subject to: 

  ∑ ∑
∈ ∈

=−
}),(:{ }),(:{Ajij Aijj

k
i

k
ij

k
ij rxx , KkNi ∈∀∈∀ ,  (5) 

 

  bx ij
Kk

k
ij ≤∑

∈
, Aji ∈∀ ),(  (6) 

 
  0≥xk

ij , Aji ∈∀ ),( , Kk ∈∀  (7) 
where, 

N  = Set of n  nodes 

A  = Node-arc incidence Matrix 

K  = Set of k  commodities 

J  = Set of j  arcs 

R  = Set of r  constraints 

k
ijc  = Unit flow cost of commodity k  on arc ),( ji  

k
ijx  = Amount of flow of commodity k  on arc ),( ji  

k
ir  = Supply/demand of commodity k  at node i  

ijb  = Capacity of arc ),( ji  

 

Generally two assumptions are made with multicommodity flow problems:  goods 

are homogeneous, and there is no congestion (Ahuja, et al., 1993:649).  Homogeneous 
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goods assume that each commodity uses a single unit of capacity of each arc for every 

unit flow; however, in this thesis this assumption is not made (Assad, 1978:45; Ahuja, et 

al., 1993:650).  No congestion assumes that there exits a fixed upper bound on each arc 

and the cost on each arc is linear in the flow on that arc (Ahuja, et al., 1993:650).   

The basic solution methods used to solve minimum cost single commodity 

network flow problems can be modified to solve the multicommodity case.  The bases for 

multicommodity networks are any basis that contains a spanning tree for each commodity 

(Detlesfsen and Wallace, 1998:1).  If the commodities do not interact in any way, then 

each single-commodity problem can be solved separately using classic techniques 

(Ahuja, et al., 1993:649).  Linear programming also may be used to solve 

multicommodity network flow problems, although more practical algorithms may exploit 

both the block structure of the multicommodity formulation and the structure of each 

block of flow constraints.  This is evident in the Dantzig-Wolfe decomposition solution 

method (Goldberg, et al., 1997:1; Chardaire and Lisser, 1999:1).  Further, the network 

structure of each block of flow constraints may be manipulated with the relaxation of the 

coupling constraints (Chardaire and Lisser, 1999:1).   

The multicommodity flow problem can be thought of as a capacity allocation 

problem; commodities are competing for the fixed capacity bij of every arc(i,j) of the 

network (Ahuja, et al., 1993:653).  Solution approaches begin by allocating portions of 

the shared capacity to all of the commodities, and then use information gathered from the 

solution to the single commodity network flow problems to reallocate the portions of the 

shared capacities in a way to improve the overall system cost and meet mutual capacity 

constraints (Ahuja, et al., 1993:653).     
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Price-Directive Decomposition. 

In general, a price-directive decomposition method decomposes the problem into 

a master program and several subprograms, and then coordinates between the two 

problem goals by changing the objective functions (prices) of the subprograms 

(Kennington, 1978:220).  The coupling constraints of a multicommodity network 

problem introduce complexity into the solution.  If these constraints were ignored, then 

the multicommodity network problem would decompose into a shortest path solution for 

each commodity.  If these decomposed shortest path problems were solved and none of 

the coupling constraints were violated, an optimal solution would be present.  On the 

other hand, if the coupling constraints were violated, then modifications on the routing 

costs would need to be iteratively updated.  This is accomplished by placing prices on 

each use of a link, which correspond to the violated bundle constraints.   New shortest 

path solutions are then iteratively solved, where each new shortest path solution 

corresponds with the modified routing costs (Chardaire and Lisser, 1999:4).  This 

iterative process alternates between shortest path computation and price computation.  At 

each iteration, the shortest path computed is used in conjunction with previous iterations 

to determine new prices to find feasible solutions (Chardaire and Lisser, 1999:4). 

An example of a price-directive decomposition is Lagrangian relaxation.  This 

method uses the dual function to place Lagrangian multipliers (prices) on the coupling 

constraints in the objective function. This dual function is concave and continuous but 

non-differentiable, and places a lower bound on the optimal value of large linear 

programs (Chardaire and Lisser, 1999:4).  A subgradient optimization procedure may be 

used to maximize the function to find the appropriate prices (Lagrangian multipliers, λ ).  
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The subgradient optimization is an iterative approach that converges to the Lagrangian 

function’s lower bound.  The Lagrangian relaxation removes capacity constraints and 

instead “charges “ each commodity for the use of the capacity of each arc (Ahuja, et al., 

1993:652).  This algorithm develops bounds on the optimal objective function.   

Lagrangian relaxation is applied to the following minimum cost single commodity 

problem. 

Minimize: 
  cx  (8) 

Subject to: 
  bx =A  (9) 

 
The Lagrangian relaxation application of Equations (8) and (9) problem: 

  ),( xL λ  = cx  + )( bx −Aλ  (10) 
and the dual function is defined by 

  )(λw  = xMin )},({ xλL  (11) 
where, 

c  = Cost vector for the arcs of xij 

x  = Vector of flow variables for the arcs 

A  = Node-arc incidence matrix 

?  = Set of Lagrange multipliers 

The Lagrangian function is solved by using subgradient methods to “find good 

lower bounds on the optimal objective function value” (Kawatra, 1994:296).  If 

Lagrangian relaxation is applied to multicommodity network flow problems then the 

relaxed problem reduces to solving, independently of one another, the K-commodity 

subproblems.  The independent subproblems, without capacity restriction, can therefore 

be reduced to a shortest path problem with minimum cost.   
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Another example of a price-directive decomposition is Dantzig-Wolfe 

decomposition.  This decomposition method exploits the network block-diagonal form 

structure of the flow constraints.  Dantzig-Wolfe uses a node-arc formulation of 

multicommodity flow problems.  This method associates a dual variable (price multiplier) 

with each constraint in the master problems.  This procedure breaks up the constraints 

into a set of easy (network flow) constraints and a set of hard constraints (bundle 

constraints) (Ahuja, et al., 1993:652).   

The master problem is solved as a linear program yielding the set of prices for 

each subproblem.  The subproblems are solved as single commodity, pure network flow 

problems to produce columns needed for the master problem.  There are no flow bounds 

on the individual commodities other than the bundle constraints.  At initialization, a basis 

matrix and the slack variables are used to produce a set of columns for the first reduced 

master problem.  After each iteration of solving the reduced master problem to 

optimality, the set of shortest paths of the subproblems are solved to check for optimality, 

in respect to the full master problem.  If the reduced costs of all variables are non-

negative, assuming minimization, then an optimal solution is obtained; otherwise, the full 

master problem is exchanged for new columns of an updated basis, and the procedure 

repeats.  Cremeans, Smith, and Tyndall used linear programming and column generation 

to solve multicommodity network flow problems that simultaneously considers network 

chain selection and resource allocation (Cremeans, Smith and Tyndall, 1970:269).  The 

resources of the multicommodity network flow problem include equipment or other 

mobile assets that are required to accomplish flow on many arcs of the network 

(Cremeans, et al., 1970:271).   
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Resource-Directive Decomposition. 

Another solution approach to solving multicommodity problems is resource-

directive decomposition, which allocates (right-hand side allocation) the joint capacity of 

each link to the commodities, instead of using prices to decompose the problem 

(Chardaire and Lisser, 1999:12).  Resource-directive decomposition methods allocate the 

available resources from the master problem to the subproblems (Assad, 1978:50).   

Partitioning Methods.   

Partitioning techniques exploit the block structure of the matrices in the simplex 

algorithm.  This simplex approach is commonly known as the network simplex algorithm 

(Ahuja, et al., 1993:665).  These matrices are triangular, enabling the system of linear 

systems to be solved by forward or backward substitution (Chardaire and Lisser, 

1999:15).  The network simplex algorithm applied to multicommodity network flow 

problems requires the maintenance of a partitioning of the basis matrix.  Examples of 

work with partitioning methods include Goffin, Gondzio, Sarkissian and Vial, formulated 

nonlinear multicommodity flow problems with convex costs.  Further examples include, 

Farvolden, Powell, and Lustig, who used both primal partitioning and decomposition 

techniques to solve multicommodity network flow problems. Finally, Ford and Fulkerson 

solved the maximal multicommodity undirected network flow problem with a simplex 

computation for arc-chain formulation (Ford and Fulkerson, 1958; Farvolden, Powell and 

Lustig, 1993; Goffin, Gondzio, Sarkissian and Vial, 1995:1).   

In 1985, McBride produced EMNET, which can solve generalized network 

problems with additional constraints and additional (complicating) variables (McBride, 

1985:82).  EMNET uses a primal partitioning network simplex algorithm to solve large 
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multicommodity flow problems efficiently when coupled with a resource-directive 

decomposition heuristic (McBride, 1998:947).  According to McBride, “the simplex 

method is the best way to solve large multicommodity flow problems when the network 

portion is isolated and exploited” (McBride, 1998:954).    

A study by Castro and Nabona crosses all three general types of solution methods 

for multicommodity network flow problems (Castro and Nabona, 1996:37).  Castro and 

Nabona produced PPRN, a code that uses primal partitioning and the Langrangian 

relaxation method, for solving the multicommodity network flow problem with a linear 

or nonlinear objective function (Castro and Nabona, 1996:37).  In addition, Zenios, Pinar, 

and Dembo develop a methodology for large scale optimization problems with embedded 

network structures by using a linear-quadratic penalty (LQP) function as a multiplier to 

decouple side constraints and produce a sequence of differentiable, but non-separable, 

linear network problems (Pinar and Zenios, 1992; Zenios, Pinar and Dembo, 1995:220).  

Examples involving network flows include (Schneur, 1991:47-61; Ahuja, et al., 1993:8): 

• The transmission of messages in a communication network between 
different origin-destination pair 

 
• Transportation of passengers from different origins to different 

destinations within a city 
 

• Routing of nonhomogeneous tankers 
 

• Optimal location of intermediate distribution facilities between plants and 
customers 

 
• Railroad traffic scheduling problems 

 
• Multi-vehicle tanker scheduling problem (Bellmore, Bennington and 

Lubore, 1971) 
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• The determination of the routing of circuits and construction of additional 
arc capacities in a communication network so as to satisfy forecasted 
circuit requirements at minimum cost (McCallum, 1977) 

 
• The formulation of a reliability communication network problem as a 

multicommodity maximum flow problem (Tsujii, 1979) 
 

To expand upon the first example, a standard telecommunication network houses 

telephone exchanges and transmission facilities as nodes, copper cables or fiber optic 

links represent arcs, and transmission of voice, video, and/or data would signify the flow 

of the commodities. 

Communication Systems Fundamentals 

Generally, communication systems involve sending information from a source 

node to a destination node.  Technically, sending information from point to point 

involves the transmission of electromagnetic waves (Saadawi, Ammar and Hakeem, 

1994:50).  The transmissions of these electromagnetic waves span a range of frequencies 

from extremely low to extremely high (Saadawi, et al., 1994:50). These electromagnetic 

waves are harnessed into an information signal.  A communication network is a collection 

of stations (or devices) to transmit this information signal from source points to 

destination points via a transmission medium.  For example, the information flow of 

telephone calls, characters, video, and so forth, in any communication network, 

represents a multicommodity flow if the flows share the same underlying network.  These 

specific types of communication networks represent a country’s infrastructure, and in 

turn, represent vital targets to a commander in a theatre.  These communication networks 

could consist of such elements as: a telephone network, wide area data networks 

(WANs), local area networks (LANs), metropolitan area networks (MANs), radio 
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networks, satellite networks, mobile phone networks, and cable television networks 

(Saadawi, et al., 1994:21).  Due to the vast size of a communication network, the 

underlying network must be utilized instead of solving the problem as a straight linear 

program.  In order to separate the network properties, communication networks are 

decomposed into a number of subproblems (Kawatra, 1994:296). 

Telecommunications 

Telecommunications is “the art and science of communicating at a distance, 

especially by means of electromagnetic impulses, as in radio, radar, television, 

telegraphy, telephony, etc” (Pooch, 1991:3).  According to the Chairman of the Joint 

Chiefs of Staff Instruction, telecommunications systems are “interconnected devices used 

to transmit and/or receive communications or process telecommunication…” (CJCSI 

6510.01B, 1997:GL-15).  Flood referred to telecommunications networks as large, 

programmable machines (Flood, 1997:402).  Telecommunication networks are growing 

in importance in all countries: “Just as telecommunications has proved to be the fuel for 

the engine of growth in the developed worlds it will surely be the same in the twenty-first 

century for what are presently developing nations” (Winch, 1998:1).  As of 1998, the 

telecommunications market approached US $1 trillion per year (Winch, 1998:1).  Winch 

further states, “The telecommunications objective is to produce high-quality voice, video, 

and data communication between any pair of desired locations, whether the distance 

between locations is 1 or 10,000km” (Winch, 1998:1).   

The signal (basis of telecommunications) contains the information that is 

traversed from point A to point B within a telecommunication system (Pooch, et al., 
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1991:4).  This signal can be transferred by “three basic electronic transmission media: 

radio (including space based systems), metallic wire, and fiber-optic cable” (Defense, 

1995:viii).  Likewise, Pooch, Machuel, and McCahn state that transmission media consist 

of open wire, cable, twisted pair, coaxial cable, optical fiber, microwave, troposcatter 

(radio HF), and communication satellites (Pooch, et al., 1991:77).   The signal 

transmitted over the media of a telecommunication system consists of voice, telemetry, 

and complex data messages (Pooch, et al., 1991:61).   

The capacity is the property that binds all of the commodities together on a 

network.  Capacity in a telecommunications network is the “maximum information rate 

(called the channel capacity and represented as a rate, in bits per second) that can be 

transmitted over a given bandwidth [and] depends on the transmitted signal power and 

the noise characteristics of the channel (as well as the channel bandwidth in hertz)” 

(Saadawi, et al., 1994:50).   

There are data requirements when modeling telecommunication network systems.  

The following are the requirements for analysis of a communication network (Oettli and 

Prager, 1971:396-397): 

 

1. Geometrical layout of the proposed network 
 

a. Nodes (communication centers) 
 
b. Links (communication channels) 

 
2. Each link cost of a unit capacity (if modeled) 
 
3. Each link capacity 
 
4. Source centers 
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5. Demand centers 
 
6. Routing congestion for day and night (optional) 
 

The second requirement, if modeling of this cost is desired, represents the cost of 

installing an arbitrary capacity.  Requirement 3 establishes that every link has an 

associated nonnegative capacity that depicts the allowable amount of flow that may 

traverse the link (Gomory and Hu, 1964:348).  Gomory and Hu point out that, within a 

communication network, the branch capacities must be large enough to allow all flow of 

the different commodities to reach their destination simultaneously (Gomory and Hu, 

1964:348).  Usually in communication networks these message requirements vary with 

time.   

For the purpose of this thesis, a telecommunication network is decomposed into 

four individual sub-networks: 

1.  The telephone communication system 
 
2.  The cellular phone communication system 
 
3.  The microwave communication system 
 
4.  The satellite communication system 
 
Telephone System.    

The standard telephone system is comprised of two components: the transmission 

facility and the switching system.  The transmission facility is broken up into a local 

loop, which connects equipment from individual users, and trunk lines, which regulates 

traffic generated by large users.  The customers are part of the local loop, which connects 

to equipment (e.g., telephone, modem, and office exchange).  The media of transfer for 
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the local loop are wire-pair cables and fiber-optic cables.  Generally, trunk lines connect 

two switching systems by a means of wire-pair cables, coaxial cables, microwave radio, 

satellites, or fiber optic (Saadawi, et al., 1994:22).  Switching systems are, generally, 

central offices and toll offices (Saadawi, et al., 1994:21). 

Switching systems connect circuits and route traffic through a network.  

Switching facilities remove the need for a direct line between each piece of equipment.  

Local and tandem switching systems are the main groups of a switching system in a 

telephone network.  Local systems (central offices) connect customer loops to other 

customer loops.  Tandem switching systems connect central offices to other central 

offices (Saadawi, et al., 1994:22).  Tandem switching is the long distance connection 

between local networks.  Due to the long distance, the signal has to pass through 

amplifiers or repeaters. 

Cellular Phone Communication System.   

The cellular phone network is circuit-switching and uses radio frequency 

transmission (Saadawi, et al., 1994:26).  Circuit-switching serves the function of 

communication between two customers by capturing channels.  A cellular phone network 

consists of three main parts: the user, the cell site, and the mobile telephone switching 

office (MTSO).  The user is the actual mobile phone. The mobile phone sends a signal to 

a cell site, a transmission tower connected directly to a MTSO.  Next the mobile 

telephone switching office routes mobile phone signals into the public telephone network 

(Saadawi, et al., 1994:26-27).  This interface system allows mobile phone users to 

communicate with other telephone users. 
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Microwave Communication System. 

A microwave communication system is essentially composed of at least two 

microwave antennas and associated transmission facilities.  Each microwave antenna is 

placed 30 to 60 kilometers apart by a line-of-sight transmission (Winch, 1998:139).  Each 

line-of-sight transmission is a single hop.  In order to send a radio signal over greater 

distances, multiple hops are required.  Tropospheric scattering may be necessary in 

conjunction with microwave transmissions of distances over the horizon. 

Satellite Communication System. 

A satellite communication system consists of ground facilities and a space 

facility.  In essence, a satellite communication system is a microwave communication 

with the satellite in space acting as the repeater station between the two ground facilities.  

Each earth-based station uplinks information to the satellite, and the satellite downlinks 

the information to earth stations (Saadawi, et al., 1994:24-25).  The use of the satellite 

system does not become cost competitive with microwave radio and optical fiber systems 

until distances greater than 500 km (Winch, 1998:3).  Satellite communications and 

microwave mobile communications are inherently narrowband in nature when compared 

to optical systems (Winch, 1998:4 ). 

Multiple Criteria Decision Making 

Multiple criteria decision making (MCDM) is a means of solving a decision 

problem with potentially conflicting objectives (Schniederjans, 1995:10).  Vincke defines 

a multicriteria decision problem as: 

A situation in which, having defined a set A of actions and a consistent family F 
of criteria on A, one wishes 
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1. to determine a subset of actions considered to be the best with respect to F 

(choice problem), 
 
2. to divide A into subsets according to some norms (sorting problem), or 
 
3. to rank the actions of A from best to worst (ranking problem).  (Vincke, 

1992:28)   
 

Real- life problems give rise to a mixture of choice, therefore any decision often relies on 

one or several criteria and may not yield a single “best” solution as traditional single-

objective optimization yields.  Rather, real problems often meet a common ground among 

sorting and ranking of the objectives.  MCDM is a methodology to formulate a statement 

of the problem.   According to Korhonen, “Multiple criteria problems are more complex 

to solve than single ones, because a solution process has also to meet the requirements of 

behavioral realism” (Korhonen, 1992:550). Behavioral realism refers to focusing on the 

decision maker’s actual behavior.  Multicriteria problems are mathematically related to 

multiple-objective mathematical programs, with both “dealing with the multidimensional 

nature of control policies and the conflict- laden consideration of real-world decision-

making problems” (Haimes and Li, 1988:54).  A general model for MCDM is (Hajela 

and Yoo, 1999:209):  

  (X)f
X Ω∈
min  (12) 

  )}(),...,(),({)( 21 xfxfxfxf m=  (13) 

where, 

  }0)(,0)(|{ =≤∈=Ω XhXgRX n
 

Let )(Xf  and Ω  denote the objective function and the feasible set, respectively (Hajela 

and Yoo, 1999:209).  N represents the number of decision variables and m denotes the 
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number of objective criteria that are to be minimized.  The functions g(X) and h(X) define 

the inequality and equality constraints, respectively” (Hajela and Yoo, 1999:209).  If 

functions g(X) and h(X) depend on x then they are linear.  Equations (12) and (13) 

represent multiple objectives of equal weighting, and can be traded off subjectively.  If 

criteria are going to be traded-off against each other mathematically, then a differential 

weighted composite objective function must be formulated, represented in Equations (14) 

and (16) (Hajela and Yoo, 1999:209). 
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According to Zionts there exist four sub-areas that make up MCDM, which are presented 

in Table 1, with their related goal programming equivalents.  Linear goal programming is 

formulated and solved in this thesis. 

Table 1.  Four Sub Areas of MCDM (Zionts, 1992:567) 

MS/OR Sub Areas Related GP Topics 

Multiple Criteria Mathematical Programming Linear Goal Programming 

Multiple Criteria Discrete Alternative Integer GP and Zero-One GP 

Multiattribute Utility Theory Linear GP, Nonlinear GP, and Fuzzy GP 

Negotiation Theory GP Game Theory Models and Interactive GP 

 

Goal Programming 

Goal programming (GP) is an optional framework for conducting MCDM 

analysis.  According to Ignizio, any problem that is a candidate of mathematical 
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programming (optimization) is suitable for GP (Ignizio, 1985:15).   Goal programming 

originated from linear programming.  Single objective linear models are restricted to a 

single objective (e.g., cost for minimization or profit for maximization) (Schniederjans, 

1984:3).  In a real world environment there is rarely a single objective; most of the time 

there are multiple, potentially conflicting objective problems (Schniederjans, 1984:3).  

Deckro and Hebert point out that “The conflicting nature of these objectives results in 

solutions that involve tradeoffs or compromise” (Deckro and Hebert, 1988:149).   

A target level is a suitable level of near-achievement for any attributes warranted 

by a decision maker, rather than the target level that is satisfied exactly.  A formulated 

objective is a mathematical expression of the attributes.  An attribute and a target level 

make up a goal (Romero, 1991:1).  The desires and aspirations of the decision maker 

make up the right-hand sides (target levels) of the goal; these may or may not be achieved 

(Romero, 1991:2).  In contrast, the right-hand side of rigid constraints must be satisfied to 

avoid infeasible solutions. 

The term “goal programming” first appeared in Charnes and Cooper’s 1961 two-

volume linear programming textbook, Management Models and Industrial Applications 

of Linear Programming (Charnes and Cooper, 1961).  Charnes and Cooper first suggested 

the use of goal programming to solve infeasible linear programming (LP) programs 

(Charnes and Cooper, 1961:215-221).   

Since GP is an extension of LP, GP models are based on the canonical form of 

general LP models given by Equations (16) to (18) (Schniederjans, 1995:2): 

 
 
 



28 

Minimize: 
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  0≥jx , for j = 1, …, n (18) 
 

Charnes and Cooper suggested that each constraint be transformed into a 

functional.  These functionals are the transformed constraints, and represent the goals that 

are attempted to be satisfied.   The individual constraints, bi, are a set of goals that must 

be achieved in order to have a feasible solution (Schniederjans, 1995:3).  Equation (19) is 

the functional of Equation (17). 
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Charnes and Cooper said these goals are to be achieved by minimizing the absolute 

deviation of the functionals (Charnes and Cooper, 1961).  When infeasible solutions 

occur in a regular linear program, the overachievement and underachievement deviational 

variables of the target level are inevitable; minimizing the deviation produces the best 

solution (Schniederjans, 1995:4).   Charnes and Cooper stated, “whether goals are 

attainable or not, an objective may then be stated in which optimization gives a result 

which comes ‘as close as possible’ to the indicated goals” (Charnes and Cooper, 

1961:215).   
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There are six basic steps in the formulation of a preemptive linear goal-

programming model.  These steps are similar to that of a regular linear program but with 

slight additions.   The steps are: 

1. Define decision variables 
 
2. State Constraints 
 
3. Determine the Preemptive priorities (if applicable) 
 
4. Determine the relative weights (if applicable) 
 
5. State the objective Function 
 
6. State the nonnegativity or given requirements. (Schniederjans, 1995:21; 

Schniederjans, 1984) 
 

There are three fundamental formulations to consider when addressing goal 

programming models (Charnes and Cooper, 1977; Schniederjans, 1984; Schniederjans, 

1995).  The underlying difference between the models is the consideration of non-

preemptive versus preemptive goals.  This is a subtle difference in the actual notation of 

the model, but a fundamental difference between models.  The basic non-preemptive 

LGP is: 
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A positive deviation variable, id + , represents an overachievement of a target level in the 

constraint (or goal) (Schniederjans, 1995:3).  A negative deviation variable, id − , 

represents an underachievement of a target level in the constraint (or goal), the 

underachievement of a goal (Schniederjans, 1995:3).  Notice that the objective function, 

also called the achievement function, does not contain the traditional cost function 

(Ignizio, 1985: 25).  Instead, linear goal programming is distinguished by placing the 

deviation variables directly in the achievement function of the model (Schniederjans, 

1995:4).  The mathematical formulation of the goal program allows for a solution that has 

an infeasible solution (Schniederjans, 1995:3).  The deviation va riables allow for the 

possibility of not obtaining the exact goals but still producing a feasible solution.  The 

following complementary condition must hold: di
+ ×  di

- = 0 (Schniederjans, 1995:6).  In 

their basic formulation, the decision maker is indifferent to the achievement of any 

particular goal over another; non-attainment of the goals is to be equally reduced. 

Sometimes there arise situations in which differential weighing of the deviation 

variables are preferred.  For instance, it may be more preferable to underachieve the 

capacity of one node rather than overachieve the capacity of another node.  Therefore, 

properly elicited differential weights would be assigned to the deviation variables of a 

given goal to allow for tradeoffs between the different goals. 

The second basic model of goal programming includes differential weights to the 

deviations: 

  )(:
ii

mi
ii dwdwXMinimize − −

∈

++ += ∑  (23) 
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This achievement function is subject to equations (21) and (22).  The model is a 

construction of a non-preemptive model with differential weighted deviations from all 

goals placed in the achievement function.  The weighted constants, iw +  and iw − , 

represent “the relative weight to be assigned to the respective positive and negative 

deviation variables” (Schniederjans, 1995:6).  According to Schniederjans, differential 

weights are “Mathematical weights that are expressed as [numbers] (i.e., represented as 

wk, where k=1,2,…, k; l = 1,2,…, L) and are used to different the l deviational variables 

within a single k priority level” (Schniederjans, 1984:68).  Within a goal, there exists a 

preference for obtaining the specific goal.  The goals in the model are evenly ranked with 

regard to each other.  However, what if the decision maker prefers particular goals to 

other goals?  Then, as within a goal, there can exist weights between priority goals.  

In 1965, Ijiri, introduced preemptive priority factors as a way of ranking goals in 

the objective function of the linear goal programming model and established the 

assignment of relative weights to goals in the same priority level (Schniederjans, 1995:6).  

Deckro and Hebert describe preemptive goal programming as “models to minimize the 

sum of the weighted deviations from a set of ordered (or prioritized) goals” (Deckro and 

Hebert, 1988:149).  This third model minimizes the sum of the weighted deviations 

within a set of prioritized goals:   

  ∑∑
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−−++
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in
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The achievement function is subject to Equations (21) and (22).  Let there exist wik

+, wik
- 

≥ 0, which represent the relative weights to be assigned to each k = 1,…, ni different 

goals within the ith category to preemptive goal of Pi is assigned.  The set of ordered 
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preemptive goals, Pi, serve only as a ranking symbol that can be interpreted to mean that 

no substitutions across categories of goals will be permitted (Schniederjans, 1984:68; 

Deckro and Hebert, 1988:149; Schniederjans, 1995:7).  This means that the weight 

associated with the priority level of deviational variables is infinitely greater than the 

weight of the next lower priority level.  The mathematical representation is as follows: 

  Pi(Most Important)>Pi+1>Pi+2>>>Pi+k(Least Important) (25) 
 
Further, it is assumed that no relative weighting attached to the deviation variable can 

consist of a combination to produce a substitution across preemptive goals in the process 

of choosing the xj (Schniederjans, 1995:7).  According to Chandler, “Within a given 

priority level, discrepancies are weighted according to their importance, relative to other 

discrepancies at that level” (Chandler, 1982:63).  In addition, Chandler points out that “at 

a given priority level, all discrepancies must have the same unit of measure, but different 

levels can have different measures” (Chandler, 1982:63).   

The selection of a differential weighting scheme for the individual goals is a 

primary concern with the use of goal programming (Deckro and Hebert, 1988:151).  

There are two major concerns that must be taken into consideration when modeling.  The 

first concern is naïve relative weights, which occur in models when weights do not 

accurately reflect the true proportioned weight that is innate in the decision environment.  

This may be limited by existing weighting methods such as the analytic hierarchy 

process, conjoint analysis, and even multiple regression analysis (Schniederjans, 

1995:28).  Decision Analysis offers a number of techniques that may be used to develop 

weights.  The second major concern is the incommensurability of goal constraints.  This 

may occur when different measures of differing goals bias the iterative solution 



33 

procedure in favor of the parameters that yield the largest reduction in deviation.  The 

bias may be minimized naturally if priority goals are kept the same measures within each 

priority goal.  If priority goals are not used then scaling or normalizing of goal constraint 

parameters limit the amount of incommensurability of goal constraints (Schniederjans, 

1995:37).   

Post-Optimal Analyses   

Traditionally, sensitivity analysis arises when no alternatives are optimal. The 

following is a possible list of optimal model analysis to be performed (Ignizio, 1985:63): 

1. Changes in the weighting at a priority level 
 
2.  Changes in the weighting of deviation variables within a priority level 
 
3.  Changes in right-hand-side values 
 
4.  Changes in technological coefficients 
 
5.  Changes in the number of goals 
 
6.  Changes in the number of decision variables 

 
7.  Reordering preemptive priorities.  
 

For the purpose of this study, both the reordering of preemptive priorities and 

changes in selective right-hand-sides are explored.  The reordering of preemptive 

priorities is conducted by obtain solutions for the possible combinations of the ordering 

of the preemptive goals.  The solution sets are then analyzed for comparison and insight.   

For large-scale network problems, discrete changes in the right-hand-side become 

ambiguous; instead, continuous, parametric analysis is usually conducted.  This is 

explained further in Chapter 3.   
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Past AFIT Academic Research Dealing with Network Flows 

An Approach to Disrupting Communication Networks.   

Pinkstaff developed a methodology to identify and evaluate candidate target sets 

for a communications network.  Pinkstaff utilizes value focused thinking and multiple 

objective decision analysis to develop node and arc costs for a minimum cost and a near-

minimum cut-set algorithm to produce candidate target sets (Pinkstaff, 2001).   

A Network Modeling Tool. 

 Leinart developed a methodology which quantitatively measures the value of 

each target set in achieving an objective is needed; assuming a given a network disruption 

has been identified (Leinart, 1998; Leinart, Deckro, Kloeber Jr. and Jackson, 2002:).  

Leinart focuses solely on a voice medium in a telecommunication network.  Leinart 

defines two critical parts to a network disruption: “the severance or hindrance of 

information flow, and the nodes between which this information flow is to be affected” 

(Leinart, 1998:3).  Leinart used a visual Basic/Excel environment to transform an 

undirected graph into a new graph.  This transformed graph is represented as a vertex 

adjacency list.  He used a notional voice telecommunications network, which 

encompassed ground, cellular, radio, and satellite. 

Modeling and Analysis of Social Networks. 

Renfro developed a methodology for modeling and analysis of social networks.  

Renfro uses a flow model with goal programming to capture and represent the multiple 

objectives inherent in complex social behavior within social networks.  Renfro states, 

“Social networks depict the complex relationships of individuals and groups in multiple 
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overlapping contexts. Influence in a social network impacts behavior and decision 

making in every setting in which individuals participate" (Renfro, 2001:x).  

Other Academic Research Dealing with Network Flows 

Scaling Algorithms for Multicommodity Flow Problems and Network Flow 
Problems with Side Constraints. 
 

Schneur, uses “scaling and ε -optimality, together with penalty function methods, 

to develop algorithms for multicommodity network flow problems and network flow 

problems with side constraints” (Schneur, 1991:2).  Schneur relaxes the coupling 

constraints and additional side constraints and then places a quadratic penalty term for 

their violation to the objective function.  The scaling algorithm solves the resulting 

nonlinear function subject to the non-relaxed constraints. 

Summary 

This chapter discussed the fundamental concepts and literature underlying this 

thesis work.  The literature opened with the discussion of the field of network flows and 

led into the application of multicommodity network flow models.  Modeling techniques 

and post-optimal analysis options were highlighted to enrich the modeling capability of 

multicommodity network flows.  This chapter built the foundation to develop the 

application of these concepts into a methodology, discussed in Chapter 3. 
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III.  Methodology 

 
 

This chapter presents a methodology for modeling and analysis of multicriteria 

telecommunications networks.  This procedure demonstrates a five-step process from 

model setup to output generation.  Figure 3 outlines the flow chart of the methodology.  

Research Framework 

Given 
Network 

Mathematical 
Formulation 

Network 
Insights 

Post-Optimality 
Analyses 

DM 
Preferences 

Solve 

Output Analysis Yields 

 

Figure 3.  Methodology flow Chart 

The first step of the methodology is to obtain the necessary information regarding 

the existing telecommunications network of interest for analysis.  The interested 

organization must provide the required knowledge and information relating to the 

topology, attributes, and preferences of the telecommunications network to model and 

analyze the scenario of concern.  Third, the mathematical formulation of the model is 

construc ted, the proper solution approach is selected, and the model is solved.  Fourth, 
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post-optimal analyses are conducted on the model output.  Sensitivity analysis conducted 

by a reordering of preemptive goals might be done to analyze changes in the 

configurations of the model.  Parametric analysis of selective right-hand-sides is 

undertaken to identify possible trade-offs between the commodities of interest and 

selective right-hand-side values of capacities.  The information collected may be depicted 

numerically or as a graphical representation of the trade-offs of interest.  Finally, all 

analyses are consolidated and pertinent information is extracted.  The insight is then 

provided to the decision maker. 

Network Problem 

The first step entails eliciting the knowledge of the components of the 

telecommunications network of interest.  Figure 4 identifies the minimum data required 

to conduct the analysis described in this study. 

Given Network  

Nodes (communication centers)  

Links (communication channels) 

Each link capacity  
• Source centers  

• Demand centers  

Commodities 

Each link cost of a 
unit capacity flow  

Network Topology Arc Characteristics 

 

Figure 4.  Network Components 
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The topology of the network must be ascertained; this includes all nodes, 

representing the equipment, and all links, representing all media types.  The possible 

types of equipment include: transit switches, satellite facilities, a radio facilities, add/drop 

repeaters, and terminals.  The media types include:  fiber optic cable, coaxial cable, 

troposcatter transmission, microwave transmission, and satellite transmission.  The given 

network may be undirected, however it is mathematically described as a directed network 

in the node-are incidence matrix.  The commodities of interest must be identified and 

described in unit capacity cost of flow (i.e., bits/sec).  A voice channel may take up 64 

kbits/sec of capacity as opposed to video, 100 kbits/sec.  Furthermore, each arc in the 

network must state an actual or estimated arc maximum capacity (bits/sec).  Finally, the 

source nodes of all commodities and demand nodes of all matching commodities must be 

identified.  Once these basic components are identified, the decision maker constructs the 

preemptive goals for inspection. 

Goal Construction 

Goal programming (GP) is a framework for modeling multicriteria decision-

making.  Explicit weighting of objectives, generalized prioritization of objectives, or no 

weighting may be used.  The decision maker must specify any preemptive goals for 

investigation.  The decision maker may want the goals to disrupt at least 50% of all arcs 

coming out of command bunkers and to allow only data to be relayed through identified 

radio towers.  Additionally, the goals may be rank-ordered from most preferred to least 

preferred.  The extracting of the proper elements of a model is a key step.  Revealing 

preferences and goals can be an entire project in itself.  While not a trivial step, the 
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analyst assumes that the necessary data has been developed.  Once this information is 

provided, a mathematical representation of the network and preferences can be 

constructed. 

Mathematical Formulation 

The mutual coupling constraints and/or side constraints destroy the pure network 

structure of multicommodity network flow problems.  Additionally, goal constraints 

cloud the network structure of a minimum cost multicommodity network flow problem.   

McGinnis and Rao point out that the addition of goal programming constraints in 

network problems “obliterates the problem’s natural network structure” (McGinnis and 

Rao, 1977:243).  McGinnis and Rao suggest a way to use the framework of the additional 

goal programming constraints to isolate the pure network structure.  They suggest that by 

using the partial Langrangian duality approach, the network structure can once again be 

isolated.  McGinnis and Rao proposed this concept in the context of a minimum cost 

single commodity network flow problem with goal programming.   

The same methodology, however, may be extended to goal-based 

multicommodity network flow problems.  Goal constraints may be viewed as additional 

side constraints.  Therefore, a Lagrangian relaxation approach may be applied to both the 

mutual coupling constraints and the goal constraints.  This relaxation approach to a goal 

based multicommodity network flow problem retains and isolates the pure network 

structure of the underlying network flow model.  This framework, while considering 

goals, facilitates the employment of network algorithms to solve the goal programming 

multicommodity network flow more efficiently than classic methods such as the simplex 
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goal programming method (McGinnis and Rao, 1977:243).  Figure 5 depicts the flow 

chart needed for the mathematical formulation. 

Figure 5.  Mathematical Formulation Flow Chart 

 

After the mathematical formulation is established, the appropriate solution 

technique is implemented depending on modeling requirements and problem 

characteristics.  Linear goal programming may be used on relatively smaller size 

problems.  As the problem of interest grows in size Lagrangian relaxation or Dantzig-

Wolfe decomposition is implemented in conjunction with network optimization.  If the 
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problem characteristics are linear, then Dantzig-Wolfe decomposition of the linear 

problem may be preferred; otherwise, Lagrangian relaxation is used.  If the no congestion 

assumption does not hold then the problem may be non- linear.  Lagrangian relaxation 

would be the suitable solving option. 

For some operational settings, differential weighing of the deviation variables 

may be preferred.  There may be a goal to further restrict a capacity, expressed as an 

aspiration level in a goal constraint, rather than leave excess capacity at a given node.  

Therefore, differential weights could be assigned to the deviation variables of a given 

goal.  This depends on the preferences of the decision maker.  The overachievement of an 

aspiration level may be more heavily preferred than the underachievement.  There may be 

other situations where an absolute ranking between the goals is required.  In such cases, a 

model of preemptive goals with differential weighting within each goal would be in 

order.  Once the decision maker defines the preemptive goals, they may be 

mathematically defined and added to the previous formulation.  Equation (4) transforms 

into Equation (26) and additional goal constraints are added: 
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where, 
 
Α = Node-arc incidence Matrix 

Κ = Set of k  commodities 

J  = Set of j  arcs 

R  = Set of r  constraints 

Q  = Set of q  goals 

iP  = Preemptive priority goal iPPP >>>>>>>>> ...21  
 

qw  = Represent the relative weight to be assigned to the respective positive/negative 
deviations 

 
±

qd  = Represents the overachievement or underachievement of the q priority 

k
ijc  = Unit flow cost of commodity k  on arc ),( ji  

k
ijx  = Amount of flow of commodity k  on arc ),( ji  

k
ir  = Supply/demand of commodity k  at node i  

ijb   = Capacity of arc ),( ji  

The additional equations, kk gGx = , represent the augmented constraints to 

construct the goals of the network.  A number of options are available to solve the goal 

multicommodity flow model.  This multicommodity problem can be solved with linear 

programming methods, if the network is relatively small.  However, the majority of 

communication networks are vast in size; it would be advantageous to exploit the 

embedded network properties of the problem.  Due to the nature of goal programming, 

the goals, Equations (28) and (29), mitigate the pure network properties of the network, 
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preventing the direct use of multicommodity network codes.  Most researchers have 

simply solved single-commodity flow problems as linear programs, foregoing the 

potential computational advantage of exploiting the underlying network structure.  

McGinnis and Rao suggested a method to preserve the pure network structure of 

minimum cost network flow problems with goal programming (McGinnis and Rao, 

1977).  The methodology in this study extends their work to multicommodity flow 

problems. 

Partial Lagrangian Relaxation. 

Lagrangian relaxation, if applied judiciously, maintains the underlying network 

structure (i.e., unimodularity) of subproblems.  The Lagrangian relaxation formulation is 

given as: 
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All variables nonnegative 

where, 

λ = The vector of Lagrange multipliers 

A subgradient optimization algorithm may be used to solve this Lagrangian 

relaxation formulation.  A decomposition of this Lagrangian relaxation could also be 

formed, fully utilizing the underlying pure network structure.  The Lagrangian relaxation 

is usually applied to non-linear functions and could be tedious to implement.  If the 
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Lagrangian-relaxed problem may be solved as a linear program, then the formulation is 

linear.  Performing decomposition of Lagrangian relaxation, while the formulation being 

linear, is approximately the same as performing Dantzig-Wolfe decomposition of the 

linear problem (Minoux, 1986:364).   

There exist various ways to model a multicommodity network flow problem with 

multiple objectives that offer the ability to capture different elements.  When modeled, 

the systems have different possible solution approaches.  Once an approach has been 

decided and implement, and an optimal solution is established, sensitivity/parametric 

analysis may be conducted.   

Sensitivity Analysis 

Using one of the solution approaches presented in this chapter, a minimum cost 

multicommodity network flow problem with multiple goals is formulated and solved.  

However, a solution to a mathematical formulation may not provide all the necessary 

information to the decision maker.  In addition, there may exist concerns regarding data 

accuracy and the robustness of a solution.  Therefore, post-optimal analysis may be 

conducted on the range of the optimal solution.  Sensitivity analysis investigates the 

effects of discrete parameter changes of a single factor on the optimal solution.  The 

operations research literature is rich with applications of post-optimality analysis of linear 

programs.  Post-optimality analysis allows the analyst to test the robustness of the model, 

its assumptions, and the values of its parameters.  A sensitivity analysis can be tailored to 

the key aspects of a scenario deemed by a decision maker, or anticipated scenarios of 
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interest.  Linear goal programming sensitivity analysis is conducted with more 

restrictions.   
 

Figure 6.  Post-Optimal Analyses Flow Diagram 

 

As outlined in Chapter 2, for this study two particular post-optimality areas are 

demonstrated:   

1. Reordering of preemptive priorities  
 
2. Parametric analysis of selective RHS values of capacities and trade-offs of 

commodities, in regards to the right-hand sides of the supply-demand constraints 
 
Reordering of Preemptive Priorities. 

Sensitivity analysis gives the ability to ask “What if?” questions of changes in the 

problem statement and to more effectively grasp the notion of both certain and uncertain 

aspects of the model.  Sensitivity analysis of the reordering of preemptive priorities may 

reveal restrictions a higher preemptive goal places on a lower preemptive goal.  The 
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reordering of preemptive priorities may be performed by setting up multiple runs with a 

different priority scheme of the preemptive goals.  The solutions from each preemptive 

goal scheme will depict how the flow of the commodities attains the goals differently.  

This will bring insight to the decision maker, particularly in situations where the results 

of the prioritizations have resulted in unintended consequences. 

Changes of Differential Weights Within a Priority Goal. 

The differential weighting of goals within a priority goal of a goal program tends 

to be uncertain, as pointed out in Chapter 2.  Therefore, sensitivity analysis of the 

weighting must be undertaken to identify the appropriate range of differential weighting 

among within a priority goal.  As with the reordering of the preemptive goals, the 

differential weighting of goals within a priority goal may be merely conducted by setting 

up runs with different weighting schemes.  The resulting solutions provide insight into 

the range of the optimal solution of the flow of the commodities.  For instance, the 

operating ranges of the number of commodities that maintains a certain attainment level 

of a goal, or the alternate routes that maintain the same attainment level of a goal provide 

additional network insight. 

Changes to the Right-Hand Sides. 

Parametric analysis may be conducted on right-hand sides of large-scale networks 

to identify ranges of optimality.  Parametric analysis studies the effect of predetermined 

continuous parameter changes on the optimal solution, such as the availability of 

resources (Taha, 1992:167).  There are two cases of parametric analysis:  (1) a parameter 

in the achievement function and (2) a parameter in the right-hand side column.  

Parameterization of selective RHS capacities of arcs and parameterization of the 
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conservation of flow constraints for supply and demand are the focus of the parametric 

analysis illustrated in this study.   

Changes in Right-Hand-Sides . 

Let b represent the vector of all right-hand-side resource of interest that are to be 

parameterized.  The right-hand-side resource is parameterized to be ,?ßb +  where ß  is 

a vector of relative rates of change in bi as a linear function of ?  (Taha, 1992:171).  The 

new value of the right-hand-side resource, Bx~ , is equal to )(1 ?ßb +−B .  The variable 

? may be added as a variable to the minimum cost multicommodity network flow 

problem with multiple objectives and solved by the same method of choice.  The right-

hand-side resource of interest would just need to be augmented with ? and ß .   

Network Insight 

Solution information from the goal multicommodity network flow problem, 

coupled with the information from the post optimality analyses, provides an array of 

insights.  For example, information from the parameterized problem may be consolidated 

and presented as a graph.  The information may provide insight as to trade-off in capacity 

between nodes and/or arcs.  In Chapter 4, the methodology is implemented on a notional 

network of a fictitious scenario involving a rogue nation.
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IV.  Results and Analysis 

Introduction 

In this chapter a notional telecommunications network for a fictitious country is 

modeled and analyzed.  This notional network was taken from Pinkstaff’s thesis 

(Pinkstaff, 2001).  His scenario and communications network were used as a baseline 

topology, but were modified to provide illustrations of this approach. 

Scenario and Mission Objective 

Within this scenario there exists a fictitious rogue nation surrounded by two allied 

countries: allied country A and allied country B.  The United States is in the pre-hostility 

stages for military action against this foe.  The theatre commander has stated a goal of 

monitoring communications between the enemy’s military headquarters and various 

enemy field command bunkers eluding detection.  For the United States to achieve this 

goal, armed forces should couple with the enemy’s telecommunications network 

infrastructure using a minimum number of assets. Mission requirements dictate specific 

required minimum disruption of various types of communication facilities and links.  A 

military team is inserted into allied country B and allied country A.Targeted Network. 

To model and analyze the rogue nation’s telecommunications network, the 

establishment of a minimum requirement of information must be satisfied.  It is assumed 

that the proper target portfolios have been developed for the network.  Figure 7 provides 

a graphical depiction of an undirected telecommunications network.  
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Figure 7.  Notional Telecommunications Network 
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As with almost any nation’s infrastructure, portions of the telecommunications 

network are dedicated to military and government, civilian, and a mixture of both 

military/government and civilian.  The rogue nation’s telecommunications network 

infrastructure consists of 67 nodes; each node contains one or more of the following types 

of equipment: transit switch, satellite facility, radio facility, add/drop repeater, and 

terminal.  Represented in the set of nodes are also two headquarters and five command 

bunkers.  Additionally, the network contains 119 undirected arcs; each arc represents one 

of the following media types: fiber optic cable, coaxial cable, troposcatter transmission, 

microwave transmission, and satellite transmission.  All media types in the 

telecommunications network accommodate three types of commodities, voice, video, and 

data transmissions, throughout the country.   

As mentioned in Chapter 2, the node-arc incidence matrix is arbitrarily assigned 

119 directed arcs (located in Appendix A).  Table 2 displays the link capacities and 

message sizes. 

Table 2.  Link Capacity and Message Size 

 

Intelligence shows that the three commodities that traverse the network are voice, 

video, and data.  The network is modeled as a basic broadcast package.  All messages 

(voice, video, and data) originate from the sole source node at headquarters 14.  

Command bunkers 4, 7, 24, 49, and 53, and headquarters 61 receive the messages and are 

represented as the demand nodes in the mathematical formulation.  The arc costs are an 

Capacity Fiber Optic Coxial Troposcatter Microwave Satellite Voice Video Data
Mbits/sec 51.840 44.736 44.736 3.360 1.544 0.100 0.248 0.025

Link Capacities Message Size
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arbitrary cost to monitor messages per unit flow.  They may be any appropriate allied or 

opposition “cost” factor provided they have been developed in a method appropriate for 

use as coefficients in linear programs.  The necessary requirements have been stated and 

the goals may now be established. 

Decision Maker’s Goals. 

The theatre commander’s goals may be extracted from the mission objectives.  

The overall objective is to minimize total cost of monitoring message flow.  This is 

equivalent to the minimum amount of risk that the two teams endure while monitoring 

the network.  This notional value is 945.05 if a multicommodity minimum cost flow 

algorithm is solved.  The theatre commander is only willing to allow a maximum risk of 

2000 to his two teams, combined. 

In addition, the mission objective is to analyze the effects of disrupting the flow 

of voice, video, and data of the rogue nation’s telecommunication network, but not to the 

point of detection.  The team inserted into allied country A is tasked to disrupt at least 

60% of capacity of all arcs housed at node 59 without being detected.  Node 59 has three 

fiber optic cables connected to the transit switch, one coaxial cable, and one satellite link.   

The third preemptive goal is to disrupt at least 20% of capacity of all arcs at 

facility 63.  Facility 63, a transit switch, has one fiber optic cable, one satellite link, one 

troposcatter link, and two coaxial cables connected to the trans it switch.  In addition, the 

third preemptive goal target is to disrupt at least 40% of arcs housed at facility 62.  The 

terminal at facility 62 has three coaxial cables connected to it.  The theatre commander 

prefers to disrupt facility 63 to facility 62, at a ratio of 3-to-2.  Since all goals are now 

established, the mathematical formulation of the network may be presented.   
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Mathematical Formulation 

The information from the previous two sections may now be used to formulate a 

mathematical model.  The nodes and arcs define the node-arc incidence matrix.  All arcs 

must be converted into directed arcs, so the node-arc incidence matrix be a 67 by 119 

matrix.  Arcs are identified using a labeling scheme instead of being labeled node i to 

node j.  The following is a formulation of a minimum cost multicommodity network flow 

problem (Chardaire and Lisser, 1999): 
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where, 

N   = Set of n nodes 

A   = Node-Arcincidence Matrix 

K   = Set of k  commodities 

J  = Set of j  arcs 

R   = Set of r  constraints 

k
ijc   = Unit flow cost of commodity k  on arc ),( ji  

k
ijx   = Amount of flow of commodity k  on arc ),( ji  

k
ir   = Supply/demand of commodity k  at node i  

jb   = Capacity of arc j  
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This formulation is not linear due to the absolute value of the arc variables.  

However, this formulation can be made linear.  The assumption is made that the unit- flow 

costs must be nonnegative.  In addition, introduce nonnegative variables, xj
k+ and xj

k-, 

such that xj
k = x j

k+- xj
k- and k

jx  = x j
k+ + x j

k- to produce the linear equivalent to the 

formulation represented in Equations (33) through (35) (Minoux, 1986:362).  Equations 

(36) to (39) represent a linear formulation of the previous non-linear formulation 

(Minoux, 1986:362).  
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  ,0≥±xk

j Kk ∈∀ ; Jj ∈∀  (39) 
 

The ratefactork represents the size of the packet per commodity k.  This 

formulation is solved to find a cost of flow and percentage of arc usage within the 

network.  The results are presented in Table 3 of the solution section of this chapter.  

Now that the minimum cost multicommodity network flow model has been established 

and solved, the minimum cost multicommodity network flow with preemptive goals may 

be formulated.   
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The first preemptive goal is the maximum allowable cost of risk allowed for the 

inserted teams to monitor the network.  Transforming Equation (36) into the first 

preemptive goal gives Equation (40): 

Minimize: 

  }{ 1,11
+dP  (40) 

Goal Constraint:   
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 - 

−+ + 1,11,1 dd = 2000 (41) 

 
The formulation minimizes the overachievement of the target value of 2000.  The 

inclusion of +
1,1d allows a solution above 2000.  The minimization of +

1,1d , however, 

forces a solution within the desired goal level. 

The second preemptive goal is to disrupt at least 60% of the capacity of all five 

arcs connected to facility 59.  In order to model this goal, each arc connected to this 

facility was represented by a goal constraint.  For example, the arc connecting facility 13 

to facility 59 is illustrated below.  All goal constraints pertaining to the second 

preemptive goal are formulated in Appendix B. 

Minimize: 

  }{ 1,22
+dP  (42) 

Goal Constraint:   

  ( )∑
=

−+ +×
K

k

kkk xxratefactor
1

(13,59)(13,59)  - 
+

1,2d <= 20.736 (Mbits/sec) (43) 

This particular arc illustrated is a fiber optic medium, having maximum capacity 

of 51.84 (Mbits/sec).  Therefore, the target value of the goal constraint is 20.736, 40% of 

the original maximum capacity.  This goal constraint allows for the capacity to be less, 

meaning greater than 60% of the maximum capacity of the arc was disrupted.  The 

achievement function aims at minimizing the overachievement of the target value. 



55 

The third preemptive goal is to disrupt at least 20% of capacity at facility 63 and 

to disrupt at least 40% of capacity at facility 62.  For illustrative purposes, the arc 

connecting facility 63 to facility 14 and the arc connecting facility 62 to facility 61 are 

represented in Equations (44) to (46) as goal constraints for the third preemptive goal.    

All goal constraints pertaining to the third preemptive goal are formulated in Appendix B. 

Minimize: 

  }32{ 6,34,33
++ ×+× ddP  (44) 

 
Goal Constraints:   
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−+ +×
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1
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+

4,3d <= 1.2352 (Mbits/sec) (45) 
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1

(61,62)(61,62)  - 
+

6,3d <= 26.842 (Mbits/sec) (46) 

 
The particular arc illustrated in Equation (45) is a satellite link with a maximum 

capacity of 1.544 (Mbits/sec).  The target level of 1.2352 represents 80% of the 

maximum capacity of the satellite link.  The particular arc illustrated in Equation (46) is a 

microwave link with a maximum capacity of 44.736 (Mbits/sec).  The target level of 

26.842 represents 60% of the maximum capacity of this arc.  The achievement function 

minimizes the overachievement of the targeted value of all goal constraints in this 

particular preemptive goal.  In addition, the decision maker prefers facility 63 3-to-2 over 

facility 62.  In other words, if there is a choice between disrupting facility 63 to 

disrupting facility 62, disrupting facility 63 is preferred.  Therefore, differential weighting 

must be used within the achievement function of this particular preemptive goal.  The 

overachievement variable pertaining to Equation (45) is differentially weighted by 2 and 

the overachievement variable pertaining to Equation (46) is differentially weighted by 3.  
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The solution method will choose to deviate from the overachievement variable pertaining 

to Equation (45) before deviating from the overachievement variable pertaining to 

Equation (46).  In return, the goal constraints pertaining to facility 63 are attempted to be 

satisfied before the goal constraints pertaining to facility 62.  The full mathematical 

model is displayed in Appendix B.   

Solution Method 

Communication network flow problems tend to be very large in terms of the 

number of nodes and arcs in the complete network.  Therefore, solving a communication 

network flow problem by exploiting the underlying pure network properties potentially 

saves computation time.  The notional telecommunication problem presented in this 

chapter is not nearly the size that traditional telecommunication network flow problems, 

therefore, this notional minimum cost multicommodity network flow with goals is solved 

as a linear program, using ILOG OPL STUDIO 3.51 with a CPLEX solver.   

Solution 

Model Without Goals. 

First, the model without goals was solved to find the minimum amount of risk that 

the two teams would be exposed to while monitoring the network.  All of the arcs were 

grouped into six categories.  Each category represents the range of percentage utilization. 

Table 3 depicts the six categories and the minimum cost of risk that the two teams are 

exposed to while monitoring the network. 
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Table 3. Model Without Goals Utilization 

% Utilized of 
 Max Capacity # of Arcs % of all Arcs 

>80-100% 18 15.13% 
>60-80% 5 4.20% 
>40-60% 4 3.36% 
>20-40% 4 3.36% 
>0-20% 17 14.29% 

0% 71 59.66% 
Total Cost 945.05   

 
 
 

The two teams monitoring the network are exposed to a minimum risk of 945.05.  

Only 40% of the 119 available arcs are being used to transmit current communication in 

this “minimum cost” flow.  Of the utilized arcs, 15% are utilized between 80 to 100% of 

their maximum capacity.  The two teams want to monitor the network without being 

detected.  If the flow of supply to demand within the network is disrupted then the two 

teams are compromised.   

Model With First Preemptive Goal. 

The first preemptive goal is to keep within a total risk cost factor of 2000.  The 

achievement function of this particular model minimizes the overachievement of the 

target level of 2000.  As the minimum cost multicommodity flow solution had a “cost” of 

945.05, it is not surprising that a first goal of holding cost to 2000 or less could be met.  

Table 4 depicts the six categories of utilization and the risk cost of the two teams. 
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Table 4.  First Preemptive Goal Utilization 

BASELINE MODEL 
% Utilized of Max Capacity # of Arcs % of all Arcs 

>80-100% 20 16.81% 
>60-80% 3 2.52% 
>40-60% 3 2.52% 
>20-40% 9 7.56% 

>0-20% 4 3.36% 
0% 80 67.23% 

Total Cost 1590.586  

 
 
The first preemptive goal is satisfied with a risk cost of 1590.59.  The second 

preemptive goal is implemented.  Note that as a goal, the model did not minimize cost 

once the goal was attained.   

Model With First and Second Preemptive Goals. 

Solving sequentially by goals, the first preemptive goal constraint was modified to 

allow zero overachievement of the target level within the model.  Table 5 depicts the six 

categories of utilization and the risk cost of the two teams. 

Table 5.  First and Second Preemptive Goals Results 

BASELINE MODEL 
% Utilized of Max 

Capacity # of Arcs % of all Arcs 

>80-100% 22 18.49% 
>60-80% 2 1.68% 
>40-60% 11 9.24% 
>20-40% 9 7.56% 
>0-20% 14 11.76% 

0% 61 51.26% 
Total Cost 1648.94  
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As compared to the model without goals, the unutilized arcs decreased from 60% 

to 51%.  The second preemptive goal is not satisfied.  There is one overachievement for 

one of the arc goal constraints for the second preemptive goal.  Table 6 depicts the results 

of all five-arc target levels of facility 59. 

Table 6.  Facility 59 Capacity Results 

Arc Target Level Actual Value Overachievement 
(13,59) 20.736 38.416 17.680 
(59,66) 20.736 0.000 - 
(51,59) 20.736 20.736 0.000 
(59,62) 17.894 17.894 0.000 
(47,59) 0.618 0.618 0.000 

 

The only arc to fail to meet its reduced target capacity is arc (13,59).  This is a fiber optic 

link that connects facility 13 to facility 59.  It is not possible to reduce its capacity and 

not interrupt required communication.  Figure 8, is a graphical representation of the 

relative of overachievement of the target level. 

Capacity for Arc (13,59)
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Figure 8.  Target Capacity for Arc (13,59) 
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The second preemptive goal was not satisfied because some of the demand within 

the network would not be met if all five arcs at facility 59 were disrupted to 60% of their 

max capacity.  If this is the case, the exact commodities causing the overachievement of 

the target level can be further investigated via sensitivity analysis. 

All Preemptive Goals of the Baseline Model. 

Now that the first and second preemptive goals have been implemented, the third 

preemptive goal was sequentially solved, assuming satisfaction of the upper- level goals at 

the levels already attained.  The third preemptive goals consist of disrupting capacity at 

both facilities 63 and 62; however, facility 63 is preferred 3-to-2 over facility 62.  Table 7 

depicts the percentage of arc usage from the solution of the third goal. 

Table 7.  All Preemptive Goals of the Baseline Model Results 

% Utilized of 
 Max Capacity 

# of Arcs % of all Arcs 

>80-100% 22 18.49% 
>60-80% 8 6.72% 
>40-60% 7 5.88% 
>20-40% 11 9.24% 
>0-20% 8 6.72% 

0% 63 52.94% 
Total Cost 1791.88  

 

 

The third preemptive goal also could not be satisfied.  Table 8 depicts the results 

of the overachievement and underachievement of each goal constraint pertaining to each 

facility. 
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Table 8.  Facility 63 and 62 Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 

(29,63) 51.840 41.472 17.062 - 24.410 67.09% 

(60,63) 44.736 35.789 15.518 - 20.270 65.31% 

(63,64) 44.736 35.789 0.000 - 35.789 100.00% 

(61,63) 3.360 2.688 0.000 - 2.688 100.00% 

(14,63) 1.544 1.235 1.544 0.309 - 0.00% 

       
(61,62) 44.736 26.842 0.000 - 26.842 100.00% 

(53,62) 44.736 26.842 0.000 - 26.842 100.00% 

(59,62) 44.736 26.842 0.000 - 26.842 100.00% 

 

The satellite link connecting facility 14 to facility 63 is required to use its full 

capacity.  The third preemptive goal was not satisfied for one of three reasons.  The cost 

goal could not be preventing the satisfaction of the third preemptive goal because the 

“cost” value is 1791.88; therefore, not binding.  If the disruption of the five arcs at 

facility 63 and the disruption of the three arcs at facility 62 occur to the desired leve ls, the 

teams may be detected, as the messages cannot get through.  Figure 9 is a bar graph that 

depicts the amount of overachievement of the target level capacity of the arc (14,63) goal 

constraint. 
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Figure 9.  Target Capacity for Arc (14,63) 

 

To conclude, in this notional illustrative example the second and the third 

preemptive goals had respective goal constraints that overachieved the target level.  Post-

optimal analysis needs to be conducted to see what is the cause of the dissatisfaction. 

Post-Optimal Analysis 

In order to investigate the robustness of the solutions of the model, post-optimal 

analysis needs to be conducted.  Post-optimal analysis encompasses two areas that are 

implemented in this section.  First, a sensitivity analysis of the ordering of the preemptive 

goals was conducted.  Table 9 depicts the various scenarios that are analyzed.   
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Table 9.  Preemptive Goals Reordering Scenarios 

Scenarios:  Preemptive Goals Reordering 
Original P1 P2 P3 
Variation 1 P1 P3 P2 
Variation 2 P2 P3 P1 
Variation 3 P3 P2 P1 
Variation 4 (force partial 
                       control to regional HQs)   P2 P3 P1 
Variation 5 (force partial 
                       control to regional HQs) P3 P2 P1 

 

The original scenario’s results have already been presented.  The scenario for 

variation 1 reorders the second and third preemptive goals.  Such a reordering test shows 

how sensitive the original solution is to the ordering of the priority goals.  This could 

occur if there was some question regarding the analysis.  The scenarios for variations 2 

and 3 both place the first preemptive goal last in the order of goals.  This sheds light as to 

the degree that the maximum risk of the two teams goal affects the second and third 

preemptive goals versus the message traffic represented by the rigid constraints 

(conservation of flow).  The scenarios for variations 4 and 5 are the same preemptive goal 

ordering as variations 2 and 3, respectively, however, the conservation of flow constraints 

are relaxed.  This is analogous to an implementation of a secondary command structure 

when the main headquarters has been severed from the network.  The relaxation of the 

conservation of flow constraints allows insight into which commodities (messages) are 

not meeting demand when preemptive goals 2 and 3 are implemented.   

The second area of interest in the post-optimal analysis is the parametric analysis 

of selective right-hand-sides.  The theatre commander is considering sending a team to 
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tap into the fiber optic cable connecting facility 14 to facility 15.  The theatre commander 

would like to know how much excess capacity may be reduced without being detected.   

Sensitivity Analysis 

The complete sensitivity analysis data is located in Appendix C.  In this summary 

section, a goal is stated as “satisfied” or “not satisfied”. 

Variation 1. 

Variation 1 interchanges the second and third preemptive goals.  In the baseline 

model, the third preemptive goal did not satisfy its attainment level.  With the 

interchange, the first and second preemptive goals (P1 and P2) can be satisfied.  The third 

preemptive goal (P3) is not satisfied.  Table 10 displays the overachievement and 

underachievement of the target levels of the third preemptive goal. 

Table 10.  Variation 1:  Second Preemptive Goal (P1, P3, P2) 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(13,59) 51.840 20.736 38.725 17.989 - 25.30% 
(59,66) 51.840 20.736 0.000 - - 100.00% 
(51,59) 51.840 20.736 20.736 0.000 0.000 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 

 

The same arc as in the baseline model has overachieved its target level.  The 

disruption of facilities 63 and 62 appear to inflict a smaller amount of degradation when 

compared to the disruption of facility 59.  All of the arcs connected to facilities 63 and 62 

were disrupted to 100% of their goals of 20% and 40%, respectively.  This implies that of 

the supply of each commodity could be routed without facilities 63 and 62.   
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From the baseline model and variation 1, the disruption of facilities 63 and 62 

have produced minimal degradation of the network, when viewed alone.  Therefore, 

variation 3 and variation 5 have limited impact and will not be discussed further in the 

chapter (the results may still be referenced in Appendix C).  However, there remains the 

question as to why the disruption of facility 59 is not attaining its attainment levels. 

Variation 2. 

Variation 2 reorders the second preemptive goal to the highest priority preemptive 

goal to be satisfied (P2, P3, P1).  This relaxes the total cost of flow restriction imposed 

before the disruption of facility 59 in the baseline model.  The second preemptive goal is 

not satisfied.  The third and first preemptive goals are satisfied.  Table 11 depicts the 

resulting attainment levels pertaining to the goal constraints of the second preemptive 

goal. 

 

Table 11.  Variation 2: Second Preemptive Goal (Facility 59) Capacity Results 

Arc Max 
Capacity Target Level Actual Overachieve Underachieve % Disrupted 

(13,59) 51.840 20.736 38.42 17.680 - 25.89% 
(59,66) 51.840 20.736 0.000 - 20.736 100.00% 
(51,59) 51.840 20.736 20.736 0.000 0.000 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 

 

Table 11 results are equivalent to the attainment levels from the baseline model.  

The supply of one or more of the commodities cannot reach their respective demand if 

the second and third preemptive goals satisfy their target levels.  Variation 4 provides 

insight as to exactly which commodity is not supplying all of its demand.   
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Variation 4. 

Variation 4 pinpoints exactly why the disruption of facility 59 is not being 

attained.  Modifications to the conservation of flow constraints were undertaken to allow 

for a decrease in supply-demand pairs.  In essence, the conservation of flow constraints 

were transformed into goal constraints.  The underachievement variables, associated with 

each conservation of flow constraint were differentially weighted with the 

underachievement variables, associated with the overachievement variables associated 

with each arc at facility 59.  The differential weights were chosen to reflect a greater 

concern to satisfy the attainment level of each goal constraint in the second preemptive 

goal.   

All preemptive goals were satisfied.  In order for all preemptive goals to be 

satisfied, additional supply had to come from various nodes throughout the network.  

This would be the same as a secondary command structure being implemented when the 

main headquarters is disconnected from the network.  Table 12 identifies the additional 

supply nodes to satisfy demand within the network. 

Table 12.  Variation 4:  Commodity Supply Augmentation 

 Voice Video Data 
Node 18 0 6 0 
Node 26 0 20 0 
Node 48 0 8 0 
Node 57 0 39 0 

 

The model chose to provide extra supply of video at facilities 18, 26, 48, and 57, 

to allow all of the demand destinations to be satisfied.  This is as expected since video is 

the largest bits/rate restriction of all commodities. 
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Parametric Analysis 

The theatre commander is considering inserting a team in country to monitor a 

fiber optic cable connecting command headquarters located at facility 14 to facility 15.  

This is a very vital port of information.  The monitoring of the line causes a decrease in 

the capacity of the fiber optic cable.  Currently, without any of the previous preemptive 

goals implemented, the fiber optic cable is 82.92% utilized.  The team does not want to 

be detected, and they can prevent detection by not interrupting the flow of messages.  

That threshold needs to be identified through parametric analysis. 
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Figure 10.  Parametric Analysis of the Capacity of Arc(14,15) 

 

From 0% to 17%, the cost of risk remains at the minimum cost of 945.  At 17% 

there is a break point (a basis change) causing the risk to increase.  There are basis 

changes from 20% to 25%, from 25% to 40%, and from 43%.  Above 43% the problem 
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becomes infeasible because not all of the supply can reach demand.  This implies that the 

teams would be detected after degrading the capacity of the link greater than 43%. 

Additional parametric analyses of the RHS values of supply constraints were 

conducted to discover trade-offs between commodities.  These results are provided in 

Appendix D. 

Network Insight 

From the baseline model alone it is evident that the two preemptive goals 

pertaining to the disruption of facility 59 and the facilities 63 and 62 were not satisfied.  

The two teams would have been detected.  However, through post-optimal analyses, the 

second preemptive goal (facility 59) alone decreased the amount of supply that reached 

demand.  It is recommended that the disruption of facility 63 and 62 be carried out over 

the disruption of the facilities 59 in order to avoid detection. 

Summary 

The methodology presented in this chapter enhances the formulation and analysis 

of multicommodity network flow problems.  Depending on the network problem size, a 

variety of modeling formulations are available.   

Illustrations of post-optimal analyses were provided to provide additional insight 

about the multicommodity network flow problem.  Examples of sensitivity analysis on 

the preemptive goals provided insight into the actual effectiveness of each preemptive 

goal being implemented.  In addition, an illustration of the parameterization of the 

capacity of a vital fiber optic cable in the network demonstrated additional analysis.  
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V.  Conclusions and Recommendations  

Overview 

This research developed a methodology to provide modeling and analysis of 

multicommodity network flow problems with multiple objectives via goal programming.  

A variety of formulations and solution techniques have been provided to exploit, if 

needed, the pure network structure of the underlying network being analyzed.  

Additionally, post-optimal analyses options were explored to provide more analysis about 

the network in question providing a more robust methodology. 

Research Results 

This thesis showed that the literature of graph theory, network flows, multiple 

criteria decision making (MCDM), linear goal programming (LGP), Lagrangian 

relaxation, Dantzig-Wolfe decomposition, LGP sensitivity analysis, and parametric 

analysis can be interwoven to provide modeling options and post-optimality analysis on 

multicommodity network flow problems with multiple objectives.  In addition, this study 

builds upon basic concepts of telecommunication networks, and defines a minimum set 

of criteria of network requirements for analysis.   

Depending on the number of nodes, arcs, and goal constraints, the underlying 

pure network structure of the network problem may be exploited to reduce the number of 

computations.  Lagrangian relaxation may be applied to the initial linear formulation to 

relax all side constraints.  The Lagrangian function may then be solved by a subgradient 

method or decomposed into subproblems.  Furthermore, the initial linear program may be 

solved by Dantzig-Wolfe decomposition.   
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Post-optimality analysis options include sensitivity analysis and parametric 

analysis.  Sensitivity was illustrated on the reordering of preemptive goals.  Additionally, 

parametric analysis was used to show the effects of the network when the available 

capacity of a link is decreased. 

The modeling options and post-optimality analyses provide a robust methodology 

to analyze multicommodity network flow problems with multiple objectives. 

Recommendations for Future Research 

Multicommodity network flow problems will always have a need for further 

research due to the growth of larger and more complex problems.  Faster and more 

inclusive models are continually needed for multicommodity network flow problems 

because of their size and complexity.     

Larger networks may be modeled and analyzed using the methodology developed 

in this thesis.  Each solution approached could be applied on the same large network.  

The computational times could then be compared for efficiency. 

Summary 

The methodology developed in this thesis enhances the formulation and analysis 

of multicommodity network flow problems with multiple objectives.  The methodology 

presents a variety of modeling tools such as Lagrangian relaxation and Dantzig-Wolfe 

decomposition may be exploit the underlying pure network structure of a 

multicommodity network flow problem with goal programming.   

Post-optimal analyses are presented to provide additional insight about the 

multicommodity network flow problem being investigated.  For instance, examples of 
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sensitivity analysis on the preemptive goals provided insight into the actual effectiveness 

of each preemptive goal being implemented.  Both the modeling tools and post-

optimality techniques provide for a robust methodology to solve multicommodity 

network flow problems via goal programming. 
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Appendix A.  Notional Model 

A “1” is placed in the column of the type of equipment located at the facility; 

otherwise, a “0” is placed in the column of the type of equipment.  More than 1 piece of 

equipment may be located at a facility.  “Connectivity” identifies the number of arcs 

connected to each facility. 

Table 13.  Notional Network Nodes 

Quantity and Type of Equipment Located at the Facility 

Facility # Terminal
Transit 
Switch 

Simple 
Repeater 

Radio 
Relay 

Add/Drop 
Repeater 

Satellite
Facility Connectivity 

System 
Usage 

1 1 0 0 0 0 0 1 Pure Civilian 
2 0 0 0 1 0 0 2 Mixed 

3 0 0 0 1 1 1 6 Mixed 
4 1 1 0 1 1 0 8 Military/Gov't
5 0 0 0 1 1 0 4 Mixed 
6 0 0 0 1 0 0 2 Mixed 
7 1 1 0 1 1 1 7 Military/Gov't

8 1 1 0 1 1 1 6 Mixed 
9 0 0 0 1 0 1 2 Mixed 
10 0 0 0 1 1 0 4 Mixed 
11 0 0 0 1 0 0 2 Mixed 
12 1 0 0 1 0 0 1 Pure Civilian 

13 0 0 0 0 1 0 4 Miexed 
14 1 1 0 1 1 1 6 Military/Gov't
15 0 0 0 0 1 0 4 Mixed 
16 0 0 1 0 0 0 2 Mixed 
17 1 0 0 0 0 0 1 Pure Civilian 

18 0 0 0 0 1 0 3 Mixed 
19 0 0 0 1 1 1 4 Mixed 
20 0 0 0 1 1 0 3 Mixed 
21 0 0 0 1 1 0 4 Mixed 
22 0 0 0 1 1 1 4 Mixed 

23 0 0 0 0 1 0 3 Mixed 
24 1 1 0 1 1 1 7 Military/Gov't
25 1 1 0 0 1 1 5 Mixed 
26 0 0 0 1 0 0 2 Mixed 
27 0 0 0 0 1 0 3 Mixed 

28 1 1 0 1 1 1 6 Mixed 
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Quantity and Type of Equipment Located at the Facility 

Facility # Terminal
Transit 
Switch 

Simple 
Repeater 

Radio 
Relay 

Add/Drop 
Repeater 

Satellite
Facility Connectivity 

System 
Usage 

29 0 0 0 0 1 0 5 Mixed 
30 0 0 0 0 1 0 3 Mixed 
31 0 0 1 0 0 0 2 Mixed 
32 1 0 0 0 0 0 1 Pure Civilian 

33 0 0 0 1 1 0 3 Mixed 
34 1 1 0 1 1 1 5 Mixed 
35 0 0 0 1 1 0 3 Mixed 
36 0 0 0 1 1 0 3 Mixed 
37 0 0 0 1 1 0 4 Mixed 

38 0 0 0 1 0 0 2 Mixed 
39 1 1 0 1 1 0 5 Mixed 
40 0 0 0 1 0 0 2 Mixed 
41 0 0 0 1 0 0 2 Mixed 
42 0 0 1 0 0 0 2 Mixed 

43 0 0 0 1 1 0 4 Mixed 
44 1 0 0 0 0 0 1 Pure Civilian 
45 0 0 1 0 0 0 2 Mixed 
46 1 0 0 0 0 0 1 Military/Gov't
47 0 0 0 1 1 1 5 Mixed 

48 0 0 0 0 1 1 3 Mixed 
49 1 0 0 1 1 0 5 Military/Gov't
50 0 0 0 0 0 1 2 Mixed 
51 0 0 0 0 1 0 4 Mixed 
52 1 1 0 1 1 1 6 Mixed 

53 1 1 0 0 1 1 8 Military/Gov't
54 1 0 0 0 0 0 1 Military/Gov't
55 0 0 0 1 1 0 3 Mixed 
56 0 0 1 0 0 0 2 Mixed 
57 0 0 0 0 1 0 3 Mixed 

58 0 0 0 1 1 0 4 Mixed 
59 1 1 0 0 1 1 5 Mixed 
60 1 1 0 1 1 1 5 Mixed 
61 1 1 0 1 1 1 6 Military/Gov't
62 0 0 0 0 1 0 3 Mixed 

63 1 1 0 1 1 1 5 Mixed 
64 0 0 0 0 1 0 3 Mixed 
65 0 0 1 0 0 0 2 Mixed 
66 0 0 0 0 1 0 3 Mixed 
67 0 0 0 1 1 0 4 Mixed 
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Table 14.  Notional Network Links 

Medium Type and Max Capacity 
of Arc # 

Arbitrary Arc 
per Unit Cost 

Arc # 
Arbitrary 
Direction Media Type 

Capacity of Arc 
(Mbits/sec) Voice Video Data 

arc 1 (1,3) coax 44.736 0.22 0.22 0.22 
arc 2 (2,3) microwave 44.736 0.21 0.21 0.21 
arc 3 (2,7) microwave 44.736 0.14 0.14 0.14 
arc 4 (3,4) fiber 51.840 0.20 0.20 0.20 
arc 5 (3,5) microwave 44.736 0.23 0.23 0.23 
arc 6 (3,10) troposcatter 3.360 0.14 0.14 0.14 
arc 7 (3,52) satellite 1.544 0.19 0.19 0.19 
arc 8 (4,5) fiber 51.840 0.15 0.15 0.15 
arc 9 (4,7) troposcatter 3.360 0.15 0.15 0.15 
arc 10 (4,8) coax 44.736 0.14 0.14 0.14 
arc 11 (4,11) microwave 44.736 0.22 0.22 0.22 
arc 12 (4,14) troposcatter 3.360 0.15 0.15 0.15 
arc 13 (4,15) fiber 51.840 0.23 0.23 0.23 
arc 14 (4,67) troposcatter 3.360 0.15 0.15 0.15 
arc 15 (5,7) microwave 44.736 0.21 0.21 0.21 
arc 16 (5,10) troposcatter 3.360 0.14 0.14 0.14 
arc 17 (6,7) troposcatter 3.360 0.22 0.22 0.22 
arc 18 (6,8) troposcatter 3.360 0.18 0.18 0.18 
arc 19 (7,8) satellite 1.544 0.17 0.17 0.17 
arc 20 (7,9) satellite 1.544 0.22 0.22 0.22 
arc 21 (7,10) troposcatter 3.360 0.22 0.22 0.22 
arc 22 (8,9) microwave 44.736 0.22 0.22 0.22 
arc 23 (8,11) microwave 44.736 0.18 0.18 0.18 
arc 24 (8,12) microwave 44.736 0.13 0.13 0.13 
arc 25 (10,14) troposcatter 3.360 0.22 0.22 0.22 
arc 26 (13,14) fiber 51.840 0.23 0.23 0.23 
arc 27 (13,15) fiber 51.840 0.21 0.21 0.21 
arc 28 (13,16) fiber 51.840 0.20 0.20 0.20 
arc 29 (13,59) fiber 51.840 0.21 0.21 0.21 
arc 30 (14,15) fiber 51.840 0.21 0.21 0.21 
arc 31 (14,21) microwave 44.7360 0.18 0.18 0.18 
arc 32 (14,63) satellite 1.544 0.21 0.21 0.21 
arc 33 (15,16) fiber 51.840 0.17 0.17 0.17 
arc 34 (17,18) coax 44.736 0.14 0.14 0.14 
arc 35 (18,19) coax 44.736 0.15 0.15 0.15 
arc 36 (18,24) coax 44.736 0.23 0.23 0.23 
arc 37 (19,20) microwave 44.736 0.23 0.23 0.23 
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Medium Type and Max Capacity 
of Arc # 

Arbitrary Arc 
per Unit Cost 

Arc # 
Arbitrary 
Direction Media Type 

Capacity of Arc 
(Mbits/sec) Voice Video Data 

arc 38 (19,21) microwave 44.736 0.23 0.23 0.23 
arc 39 (19,25) satellite 1.544 0.13 0.13 0.13 
arc 40 (20,21) microwave 44.736 0.21 0.21 0.21 
arc 41 (20,26) microwave 44.736 0.16 0.16 0.16 
arc 42 (21,22) microwave 44.736 0.23 0.23 0.23 
arc 43 (22,23) fiber 51.840 0.21 0.21 0.21 
arc 44 (22,24) satellite 1.544 0.21 0.21 0.21 
arc 45 (22,25) satellite 1.544 0.23 0.23 0.23 
arc 46 (23,24) fiber 51.840 0.21 0.21 0.21 
arc 47 (23,25) fiber 51.840 0.21 0.21 0.21 
arc 48 (24,25) coax 44.736 0.21 0.21 0.21 
arc 49 (24,26) microwave 44.736 0.22 0.22 0.22 
arc 50 (24,27) fiber 51.840 0.22 0.22 0.22 
arc 51 (24,29) coax 44.736 0.15 0.15 0.15 
arc 52 (25,27) fiber 51.840 0.21 0.21 0.21 
arc 53 (27,28) fiber 51.840 0.23 0.23 0.23 
arc 54 (28,29) fiber 51.840 0.14 0.14 0.14 
arc 55 (28,30) fiber 51.840 0.21 0.21 0.21 
arc 56 (28,34) satellite 1.544 0.14 0.14 0.14 
arc 57 (28,41) troposcatter 3.360 0.16 0.16 0.16 
arc 58 (28,52) troposcatter 3.360 0.23 0.23 0.23 
arc 59 (29,30) fiber 51.840 0.21 0.21 0.21 
arc 60 (29,31) coax 44.736 0.07 0.07 0.07 
arc 61 (29,63) fiber 51.840 0.14 0.14 0.14 
arc 62 (30,34) fiber 51.840 0.24 0.24 0.24 
arc 63 (31,33) coax 44.736 0.21 0.21 0.21 
arc 64 (32,39) coax 44.736 0.06 0.06 0.06 
arc 65 (33,34) coax 44.736 0.15 0.15 0.15 
arc 66 (33,47) troposcatter 3.360 0.23 0.23 0.23 
arc 67 (34,35) troposcatter 3.360 0.23 0.23 0.23 
arc 68 (34,53) fiber 51.840 0.22 0.22 0.22 
arc 69 (35,36) troposcatter 3.360 0.21 0.21 0.21 
arc 70 (35,45) fiber 51.840 0.23 0.23 0.23 
arc 71 (36,49) troposcatter 3.360 0.24 0.24 0.24 
arc 72 (36,52) troposcatter 3.360 0.23 0.23 0.23 
arc 73 (37,38) microwave 44.736 0.22 0.22 0.22 
arc 74 (37,39) coax 44.736 0.21 0.21 0.21 
arc 75 (37,53) fiber 51.840 0.20 0.20 0.20 
arc 76 (37,55) fiber 51.840 0.22 0.22 0.22 
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Medium Type and Max Capacity 
of Arc # 

Arbitrary Arc 
per Unit Cost 

Arc # 
Arbitrary 
Direction Media Type 

Capacity of Arc 
(Mbits/sec) Voice Video Data 

arc 77 (38,58) microwave 44.736 0.14 0.14 0.14 
arc 78 (39,40) troposcatter 3.360 0.22 0.22 0.22 
arc 79 (39,43) troposcatter 3.360 0.14 0.14 0.14 
arc 80 (39,58) microwave 44.736 0.15 0.15 0.15 
arc 81 (40,60) troposcatter 3.360 0.13 0.13 0.13 
arc 82 (41,43) troposcatter 3.360 0.23 0.23 0.23 
arc 83 (42,43) fiber 51.840 0.21 0.21 0.21 
arc 84 (42,64) fiber 51.840 0.20 0.20 0.20 
arc 85 (43,56) fiber 51.840 0.11 0.11 0.11 
arc 86 (44,67) fiber 51.840 0.21 0.21 0.21 
arc 87 (45,47) fiber 51.840 0.23 0.23 0.23 
arc 88 (46,49) fiber 51.840 0.23 0.23 0.23 
arc 89 (47,48) coax 1.544 0.21 0.21 0.21 
arc 90 (47,49) satellite 44.736 0.21 0.21 0.21 
arc 91 (47,59) satellite 1.544 0.22 0.22 0.22 
arc 92 (48,50) satellite 1.544 0.13 0.13 0.13 
arc 93 (48,52) satellite 1.544 0.22 0.22 0.22 
arc 94 (49,51) fiber 51.840 0.23 0.23 0.23 
arc 95 (49,61) coax 44.736 0.21 0.21 0.21 
arc 96 (50,61) satellite 1.544 0.14 0.14 0.14 
arc 97 (51,52) fiber 51.840 0.23 0.23 0.23 
arc 98 (51,59) fiber 51.840 0.24 0.24 0.24 
arc 99 (51,61) fiber 51.8400 0.21 0.21 0.21 

arc 100 (52,53) coax 44.736 0.11 0.11 0.11 
arc 101 (53,54) coax 44.736 0.08 0.08 0.08 
arc 102 (53,55) fiber 51.840 0.23 0.23 0.23 
arc 103 (53,57) fiber 51.840 0.23 0.23 0.23 
arc 104 (53,60) satellite 1.544 0.11 0.11 0.11 
arc 105 (53,62) coax 44.736 0.20 0.20 0.20 
arc 106 (55,58) microwave 44.736 0.20 0.20 0.20 
arc 107 (56,57) fiber 51.840 0.24 0.24 0.24 
arc 108 (57,58) fiber 51.840 0.21 0.21 0.21 
arc 109 (59,62) coax 44.736 0.23 0.23 0.23 
arc 110 (59,66) fiber 51.840 0.15 0.15 0.15 
arc 111 (60,63) coax 44.736 0.13 0.13 0.13 
arc 112 (60,65) fiber 51.840 0.22 0.22 0.22 
arc 113 (60,66) fiber 51.840 0.21 0.21 0.21 
arc 114 (61,62) coax 44.736 0.19 0.19 0.19 
arc 115 (61,63) troposcatter 3.360 0.22 0.22 0.22 
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Medium Type and Max Capacity 
of Arc # 

Arbitrary Arc 
per Unit Cost 

Arc # 
Arbitrary 
Direction Media Type 

Capacity of Arc 
(Mbits/sec) Voice Video Data 

arc 116 (61,64) coax 44.736 0.23 0.23 0.23 
arc 117 (63,64) coax 44.736 0.21 0.21 0.21 
arc 118 (65,67) fiber 51.840 0.23 0.23 0.23 
arc 119 (66,67) fiber 51.840 0.23 0.23 0.23 
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Appendix B.  Full Mathematical Model 

 
Minimize: 

  P1{d1,1
+ + d1,1

-}, 
 

  P2{d2,1
+  + d2,2

+  + d2,3
+  + d2,4

+  + d2,5
+}, 

 
 P3{2d3,1

+  + 2d3,2
+  + 2d3,3

+  + 2d3,4
+  + 2d3,5

+  + 3d3,6
+  + 3d3,7

+ + 3d3,8
+}, 

 
Subject to: 
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−+ +×
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1
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=
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K
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+  <= 26.8416 (Mbits/sec) 
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j
k

j rxxA =− −+ )( , Kk ∈∀  

  ( ) bxxratefactor j

K

k

k
j

k
j

k ≤+×∑
=
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1
, Jj ∈∀  

  ,0≥±xk
j Kk ∈∀ ; Jj ∈∀  

 
where, 
 
N    = Set of n nodes 

A     = Node-arc incidence Matrix 

K     = Set of k  commodities 

J    = Set of j  arcs 

R     = Set of r  constraints 

iP     = Preemptive priority goal iPPP >>>>>>>>> ...21  

k
ijc     = Unit flow cost of commodity k  on arc ),( ji  

k
ijx     = Amount of flow of commodity k  on arc ),( ji  

k
ir     = Supply/demand of commodity k  at node i  

ijb     = Capacity of arc ),( ji  

±
qid ,    = The overachievement or underachievement, respectively of the ith 

priority and q goal constraint of that priority 

kratefactor   = The size of commodity k  
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Appendix C.  Variations Data 

 

Baseline Model 

First Preemptive Goal. 

Table 15.  First Preemptive Goal Results 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 20 16.81% 
>60-80% 3 2.52% 
>40-60% 3 2.52% 
>20-40% 9 7.56% 
>0-20% 4 3.36% 

0% 80 67.23% 
Total Cost 1590.586  

 

 

First and Second Preemptive Goals. 

Table 16.  First and Second Preemptive Goals Results 

% Utilized of 
Max Capacity # of Arcs 

% of all 
Arcs 

>80-100% 22 18.49% 
>60-80% 2 1.68% 
>40-60% 11 9.24% 
>20-40% 9 7.56% 
>0-20% 14 11.76% 

0% 61 51.26% 
Total Cost 1648.935  
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All Preemptive Goals. 

Table 17.  All Preemptive Goals Results 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 22 18.49% 
>60-80% 8 6.72% 
>40-60% 7 5.88% 
>20-40% 11 9.24% 
>0-20% 8 6.72% 

0% 63 52.94% 
Total Cost 1791.881  

 

Table 18.  Second Preemptive Goal Capacity Results 

Arc Target Level Actual Value Overachievement 
(13,59) 20.736 38.416 17.680 
(59,66) 20.736 0.000 - 
(51,59) 20.736 20.736 0.000 
(59,62) 17.894 17.894 0.000 
(47,59) 0.618 0.618 0.000 

 

Table 19.  Third Preemptive Goal Capacity Results 

Arc Max  
Cap 

Target 
Level Actual Overachievement Underachievement % Disrupted 

(29,63) 51.840 41.472 17.062 - 24.410 67.09% 
(60,63) 44.736 35.789 15.518 - 20.270 65.31% 
(63,64) 44.736 35.789 0.000 - 35.789 100.00% 
(61,63) 3.360 2.688 0.000 - 2.688 100.00% 
(14,63) 1.544 1.235 1.544 0.309 - 0.00% 

       (61,62) 44.736 26.842 0.000 - 26.842 100.00% 
(53,62) 44.736 26.842 0.000 - 26.842 100.00% 
(59,62) 44.736 26.842 0.000 - 26.842 100.00% 
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Variation 1 (P1, P3, P2) 

First Preemptive Goal. 

Table 20.  First Preemptive Goal Arc Usage Results 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 17 14.29% 
>60-80% 3 2.52% 
>40-60% 9 7.56% 
>20-40% 6 5.04% 
>0-20% 8 6.72% 

0% 76 63.87% 
Total Cost 1520.73  

 

First and Third Preemptive Goals. 

Table 21.  First and Second Preemptive Goals Arc Usage Results 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 24 20.17% 
>60-80% 3 2.52% 
>40-60% 8 6.72% 
>20-40% 4 3.36% 
>0-20% 11 9.24% 

0% 69 57.98% 
Total Cost 1646.54  
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All Preemptive Goals. 

Table 22.  All Preemptive Goals Arc Usage Results 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 25 21.01% 
>60-80% 2 1.68% 
>40-60% 11 9.24% 
>20-40% 5 4.20% 
>0-20% 15 12.61% 

0% 61 51.26% 
Total Cost 1628.77  

 

Table 23.  Second Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(13,59) 51.840 20.736 38.725 17.989 - 25.30% 
(59,66) 51.840 20.736 0.000 - - 100.00% 
(51,59) 51.840 20.736 20.736 0.000 0.000 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 

 

Table 24.  Third Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(29,63) 51.840 41.472 0.000 - 41.472 100.00% 
(60,63) 44.736 35.789 0.000 - 35.789 100.00% 
(63,64) 44.736 35.789 0.000 - 35.789 100.00% 
(61,63) 3.360 2.688 0.000 - 2.688 100.00% 
(14,63) 1.544 1.235 0.000 - 1.235 100.00% 

       (61,62) 44.736 26.842 0.000 - 26.842 100.00% 
(53,62) 44.736 26.842 0.000 - 26.842 100.00% 
(59,62) 44.736 26.842 0.000 - 26.842 100.00% 
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Variation 2 (P2, P3, P1) 

Second Preemptive Goal. 

Table 25.  Second Preemptive Goal Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 28 23.53% 

>60-80% 5 4.20% 

>40-60% 8 6.72% 

>20-40% 9 7.56% 

>0-20% 12 10.08% 

0% 57 47.90% 
Total Cost 3043.31  

 

Second and Third Preemptive Goals. 

Table 26.  Second and Third Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 35 29.41% 

>60-80% 5 4.20% 

>40-60% 8 6.72% 

>20-40% 15 12.61% 

>0-20% 12 10.08% 

0% 44 36.97% 

Total Cost 3526.598  
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All Preemptive Goals. 

Table 27.  All Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 23 19.33% 
>60-80% 1 0.84% 
>40-60% 7 5.88% 
>20-40% 10 8.40% 
>0-20% 14 11.76% 

0% 64 53.78% 
Total Cost 1536.1  

 

Table 28.  Second Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(13,59) 51.840 20.736 38.420 17.680 - 25.89% 
(59,66) 51.840 20.736 0.000 - 20.736 100.00% 
(51,59) 51.840 20.736 20.736 0.000 0.000 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.5440 0.6180 0.618 0.000 0.000 60.00% 

 

Table 29.  Third Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve% Disrupted 
(29,63) 51.840 41.472 1.544 - 39.928 97.02% 
(60,63) 44.736 35.789 0.000 - 35.789 100.00% 
(63,64) 44.736 35.789 0.000 - 35.789 100.00% 
(61,63) 3.360 2.688 0.000 - 2.688 100.00% 
(14,63) 1.544 1.235 1.544 0.309 - 0.00% 

       
(61,62) 44.736 26.842 0.000 - 26.842 100.00% 
(53,62) 44.736 26.842 15.518 - 11.324 65.31% 
(59,62) 44.736 26.842 15.518 - 11.324 65.31% 
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Variation 3 (P3, P2, P1) 

Third Preemptive Goal. 

Table 30.  Third Preemptive Goal Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 28 23.53% 
>60-80% 2 1.68% 
>40-60% 7 5.88% 
>20-40% 8 6.72% 
>0-20% 8 6.72% 

0% 66 55.46% 
Total Cost 3218.7  

 
Third and Second Preemptive Goals. 

Table 31.  Third and Second Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 28 23.53% 
>60-80% 5 4.20% 
>40-60% 8 6.72% 
>20-40% 9 7.56% 
>0-20% 12 10.08% 

0% 57 47.90% 
Total Cost 3055.42  

 
All Preemptive Goals. 

Table 32.  All Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 22 18.49% 
>60-80% 2 1.68% 
>40-60% 11 9.24% 
>20-40% 9 7.56% 
>0-20% 14 11.76% 

0% 61 51.26% 
Total Cost 1660.46  
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Table 33.  Second Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(13,59) 51.840 20.736 38.725 17.989 - 25.30% 
(59,66) 51.840 20.736 0.000 - 20.736 100.00% 
(51,59) 51.840 20.736 20.736 0.000 0.000 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 

 

Table 34.  Third Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(29,63) 51.840 41.472 0.000 - 41.472 100.00% 
(60,63) 44.736 35.789 0.000 - 35.789 100.00% 
(63,64) 44.736 35.789 0.000 - 35.789 100.00% 
(61,63) 3.360 2.688 0.000 - 2.688 100.00% 
(14,63) 1.544 1.235 0.000 - 1.235 100.00% 

       (61,62) 44.736 26.842 0.000 - 26.842 100.00% 
(53,62) 44.736 26.842 0.000 - 26.842 100.00% 
(59,62) 44.736 26.842 0.000 - 26.842 100.00% 

 

Variation 4 (P2, P3, P1) – relaxed conservation of flow constraints  

Second Preemptive Goal. 

Table 35.  Second Preemptive Goal Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 23 19.33% 
>60-80% 1 0.84% 
>40-60% 6 5.04% 
>20-40% 8 6.72% 
>0-20% 21 17.65% 

0% 60 50.42% 
Total Cost 1570.92  
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Table 36.  Second Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve% Disrupted 
(13,59) 51.840 20.736 20.736 0.000 - 60.00% 
(59,66) 51.840 20.736 0.000 - 20.736 100.00% 
(51,59) 51.840 20.736 2.224 0.000 18.512 60.00% 
(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 
(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 

 

Table 37.  Supplement Supply Nodes – Second Preemptive Goal 

 Voice Video Data 
Node 31 0 21 0 
Node 47 0 42 0 
Node 56 0 8 0 

 

Second and Third Preemptive Goals. 

Table 38.  Second and Third Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 25 21.01% 
>60-80% 0 0.00% 
>40-60% 6 5.04% 
>20-40% 10 8.40% 
>0-20% 23 19.33% 

0% 55 46.22% 
Total Cost 1514.06  

 

Table 39.  Third Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 
(29,63) 51.840 41.472 1.052 - 40.420 97.97% 
(60,63) 44.736 35.789 0.401 - 35.388 99.10% 
(63,64) 44.736 35.789 0.000 - 35.789 100.00% 
(61,63) 3.360 2.688 2.688 0.000 0.000 20.00% 
(14,63) 1.544 1.235 1.235 0.000 0.000 20.00% 

       (61,62) 44.736 26.842 23.758 - 3.084 46.89% 
(53,62) 44.736 26.842 5.864 - 20.978 86.89% 
(59,62) 44.736 26.842 17.894 - 8.948 60.00% 
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Table 40.  Supplement Supply Nodes – Second and Third Preemptive Goals 

 Voice Video Data 

Node 27 0 17 0 

Node 46 0 10 0 

Node 52 0 45 0 
 

All Preemptive Goals. 

Table 41.  All Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 29 24.37% 

>60-80% 0 0.00% 

>40-60% 5 4.20% 

>20-40% 12 10.08% 

>0-20% 17 14.29% 

0% 56 47.06% 

Total Cost 1551.97  
 

Table 42.  Supplement Supply Nodes – All Preemptive Goals 

 Voice Video Data 

Node 18 0 6 0 

Node 26 0 20 0 

Node 48 0 8 0 

Node 57 0 39 0 
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Variation 5 (P3, P2, P1) – relaxed conservation of flow constraints 

Third Preemptive Goal. 

Table 43.  Third Preemptive Goal Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 23 19.33% 

>60-80% 5 4.20% 

>40-60% 4 3.36% 

>20-40% 12 10.08% 

>0-20% 16 13.45% 

0% 59 49.58% 

Total Cost 1521.77  
 

Table 44.  Third Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Underachieve % Disrupted 

(29,63) 51.840 41.472 2.195 - 39.277 95.77% 

(60,63) 44.736 35.789 1.544 - 34.245 96.55% 

(63,64) 44.736 35.789 0.000 - 35.789 100.00% 

(61,63) 3.360 2.688 2.688 0.000 0.000 20.00% 

(14,63) 1.544 1.235 1.235 0.000 0.000 20.00% 
       

(61,62) 44.736 26.842 14.159 - 12.683 68.35% 

(53,62) 44.736 26.842 14.159 - 12.683 68.35% 

(59,62) 44.736 26.842 24.800 - 2.042 44.56% 
 

Supplement Supply Nodes – Third Preemptive Goal 

Not Necessary 
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Third and Second Preemptive Goals. 

Table 45.  Third and Second Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 24 20.17% 

>60-80% 1 0.84% 

>40-60% 6 5.04% 

>20-40% 8 6.72% 

>0-20% 22 18.49% 

0% 58 48.74% 

Total Cost 1572.69  
 

Table 46.  Second Preemptive Goal Capacity Results 

Arc Max Cap Target Level Actual Overachieve Unde rachieve % Disrupted 

(13,59) 51.840 20.736 20.736 0.000 0.000 60.00% 

(59,66) 51.840 20.736 0.363 - 20.373 99.30% 

(51,59) 51.840 20.736 2.587 - 18.149 95.01% 

(59,62) 44.736 17.894 17.894 0.000 0.000 60.00% 

(47,59) 1.544 0.618 0.618 0.000 0.000 60.00% 
 

Table 47.  Supplement Supply Nodes – Third and Second Preemptive Goals 

 Voice Video Data 

Node 31 0 21 0 

Node 47 0 34 0 

Node 48 0 6 0 

Node 56 0 11 0 
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All Preemptive Goals. 

Table 48.  All Preemptive Goals Arc Usage 

% Utilized of 
Max Capacity # of Arcs % of all Arcs 

>80-100% 29 24.37% 

>60-80% 0 0.00% 

>40-60% 5 4.20% 

>20-40% 12 10.08% 

>0-20% 17 14.29% 

0% 56 47.06% 

Total Cost 1551.97  
 

Table 49.  Supplement Supply Nodes – All Preemptive Goals 

 Voice VideoData

Node 18 0 6 0 

Node 26 0 20 0 

Node 48 0 8 0 

Node 57 0 39 0 
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Appendix D.  Additional Parametric Analysis 

 

Parametric Analysis 

From the sensitivity analysis of the reordering of the goals, all of the sink nodes of 

video could not be met, in the disrupted network.  The parametric analysis section is an 

illustration to analyze the range of commodity trade-offs, while maintaining the optimal 

solution. 

The first illustration analyzes the commodity trade-off of the model without goals.  

As a reminder, the minimum amount of risk in the model without goals was 945.05.  The 

commodities video and data were parameterized to find the range of video trade-off to 

data, maintaining a risk of 945.05.  The results showed that all of the fifty messages of 

video could be traded to data, while maintaining a risk of 945.05.  The same results 

agreed with the trade-off of video to voice.  In addition, in the trade-off of voice to video, 

zero messages could be traded, and the same with the trade-off of data to video.  

The second parametric analysis illustration involved using the maximum 

allowable risk of 2000.  First, the commodities video and data were parameterized to 

allow trade-off of video to data.  All of the video messages were traded to data messages, 

while maintaining a risk of 2000 or less.  Figure 11 depicts the risk associated with the 

number of commodities traded. 
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Figure 11.  Parametric Analysis Trade-off of Video to Data 
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Starting with a risk of 945.05 and zero video messages traded, the risk decreased 

to 911.42.  As expected, the same results are similar to the trade-off of video to voice.  

Figure 12 depicts the cost associated with the number of video messages traded to vo ice 

messages. 
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Figure 12.  Parametric Analysis Trade-off of Video to Voice 
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The risk ranges from 945.05 to 920.57, starting with zero video messages to fifty 

video messages traded.  The risk drastically decreased from zero to twenty video 

messages traded to voice messages, when compared to the slight decrease in risk from 

twenty-five video messages to fifty video messages; which, ranged from a risk of 921.80 

to a risk of 920.57, respectively.  Actually, the risk bottomed out at 920.57 at twenty-

eight video messages traded. 

Now that the trade-off of video to another commodity has been parameterized, 

data and voice are parameterized to investigate a trade-off, individually, to video 

messages, while maintaining a risk at or below 2000.  The trade-off of data to video is 

parameterized, and results are depicted in Figure 13. 

 

Figure 13.  Parametric Analysis Trade-off of Data to Video 
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As pictured above, the range of the allowable trade of data messages to video 

messages ranged from zero to fourteen.  Fifteen data messages or more traded to video 
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messages would violate the mutual capacity flow constraints of the commodities.  Within 

the allowable range of zero to fourteen of data messages traded, the risk linearly 

increased in value.  The same results are similar to the trade-off analysis of voice 

messages to video messages as seen in Figure 14. 

 

Figure 14.  Parametric Analysis Trade-off of Voice to Video 

Commodity Trade-off:  Voice to Video
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Opposed to the trade-off of data to video, the range of the number of commodities 

traded from voice to video is zero to twenty-one voice messages.  Twenty-two or greater 

data messages would cause the mutual capacity flow constraints to violate. 

In summary, the number of commodities being traded depends on the packet size 

of each commodity.  Video has the largest packet size causing the greatest strain on the 

mutual capacity flow constraints.  Each will be different as the packet size of each 

commodity changes in other scenarios.
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